Ion behaviour in plant cell walls. III. Measurement of the mean charge separation distance and the linear charge density parameter in delignified Sphagnum russowii cell walls

1990 ◽  
Vol 68 (4) ◽  
pp. 768-772 ◽  
Author(s):  
Conrad Richter ◽  
Jack Dainty

According to the Manning condensation theory, the structure of cation-binding uronates in the cell wall can influence ionic behaviour. Assuming the theory is valid, we measured, in cation-binding experiments, the dimensionless linear charge density parameter and the mean charge separation distance in the fully ionized delignified Sphagnum russowii cell wall. Our charge separation estimate, 1.00 ± 0.02 nm, indicates that approximately 1.3 neutral sugars are interpolated between the uronic acids in the polyuronate chains of the cation exchanger. This compares well with chemical data of isolated wall fractions from another Sphagnum species reported by other workers. The charge density parameter estimate, 0.71 ± 0.02, implies that univalent cations never condense, whereas cations with two or more positive charges condense when the degree of ionization of the fixed (wall) charges is high enough. Key words: ion exchange, cell wall, charge density.

1990 ◽  
Vol 68 (4) ◽  
pp. 773-781 ◽  
Author(s):  
Conrad Richter ◽  
Jack Dainty

Selective cation binding by Sphagnum russowii cell walls was investigated using data from bicationic potentiometric titrations of isolated cell walls. Selectivity measurements were interpreted in the context of Manning condensation. In titrations with cations of different valency, selectivity favoured the higher valency cation, as expected in Manning condensation. This selectivity generally increased with bathing pH until the wall-bound polyuronic acids became fully ionized (pH > 5). The selectivity coefficient order at full ionization was Na+–Ca2+ > Na+–La3+ > Ca2+–La3+, as predicted by the weak acid Donnan–Manning (WADM) model. Other phenomena also appear to influence binding selectivity. A small population of isolated binding sites are more effectively neutralized by univalent (or divalent) than divalent (or trivalent) cations. High selectivity for cations of lower valency at low pH also suggests a site isolation effect. In bicationic titrations involving divalent cations only, Sr24+ and Ca2+ were bound by the cell wall with approximately equal effectiveness, as predicted by the WADM model. However, cation or binding site specificities probably account for the favoured binding of Ca2+ over Mg2+ by the cell wall. Key words: ion exchange, cell wall, selectivity.


Clay Minerals ◽  
1982 ◽  
Vol 17 (2) ◽  
pp. 209-216 ◽  
Author(s):  
M. S. Stul ◽  
L. Van Leemput

AbstractDifferent montmorillonites (Otay, Chambers, Marnia, Camp Berteau, Moosburg, Greek White, Wyoming bentonite were deferrated with a dithionite/citrate solution; iron sulphide by-products were eliminated with an HCl washing and citrates with an H2O2 oxidation. The smaller CEC after deferration could not be assigned to either (i) the occurrence of a positive correlation between CEC and particle sizes smaller than 0.2 µm or (ii) to the mean charge density of these sub-fractions. All sub-fractions had a heterogeneous interlayer cation density distribution.


1960 ◽  
Vol 13 (3) ◽  
pp. 267 ◽  
Author(s):  
J Dainty ◽  
AB Hope ◽  
Christine Denby

Studies of isolated cell walls from Ohara australi8 have been extended to measure the concentration of the endogenous anions of the wall and the pK of the acids which ionize to give these anions. The conce'ntration of in diffusible anions in the wall is O� 8 equiv/l when the external concentration of cations is 20 mN but may be higher when it is greater than this. The mean pK of the acids from which the wall anions are derived is 2� 2.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


2008 ◽  
Vol 56 (3) ◽  
pp. 341-348
Author(s):  
P. Pepó ◽  
A. Kovács

Cryopreservation appears to be a suitable solution for the maintenance of potato germplasms. The protocol described in this paper can be applied for the vitrification and preservation of meristems. During histo-cytological studies it is possible to observe modifications at the cellular level and to understand the adaptive mechanism to low temperatures. Control potato meristem tissue contained a number of meristematic cells with a gradient of differentiation. After freezing there were a large number of vacuolated cells, some of which exhibited broken cell walls and plasmolysis. The thickening of the cell wall, giving them a sinuous appearance, was observed after freezing and thawing the meristems, with ruptures of the cuticle and epidermal layer.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 236
Author(s):  
María Belén Cuadrado-Pedetti ◽  
Inés Rauschert ◽  
María Martha Sainz ◽  
Vítor Amorim-Silva ◽  
Miguel Angel Botella ◽  
...  

Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.


Sign in / Sign up

Export Citation Format

Share Document