Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration

1998 ◽  
Vol 76 (11) ◽  
pp. 1947-1954 ◽  
Author(s):  
M R Smith ◽  
I Charvat ◽  
R L Jacobson

The effect that arbuscular mycorrhizal (AM) inoculum has on the development of an early successional tallgrass prairie restoration was investigated in field plots of a recently disturbed area in Minnesota, U.S.A. Mycorrhizal inoculum reproduced from a native prairie was placed below a mix of prairie seed. Two sets of control plots were established, those with seed only and those with seed and a sterilized soil. By the end of 15 months, plants in the inoculated plots had a significantly greater percentage of roots colonized by AM fungi. While inoculation had no effect on total percent cover of plants, percent cover of native planted grasses was significantly greater in the inoculated plots than in the two sets of controls. The increase in percent cover of native grasses may increase the rate of succession by allowing these grasses to outcompete the ruderal species also present at the site. Our findings suggest that inoculation with arbuscular mycorrhizae promotes the development of early successional tallgrass prairie communities.Key words: mycorrhizae, prairie, reclamation, plant community, inoculation, restoration.

2015 ◽  
Vol 24 (8) ◽  
pp. 1118 ◽  
Author(s):  
Susan Kidnie ◽  
B. Mike Wotton

Prescribed burning can be an integral part of tallgrass prairie restoration and management. Understanding fire behaviour in this fuel is critical to conducting safe and effective prescribed burns. Our goal was to quantify important physical characteristics of southern Ontario’s tallgrass fuel complex prior to and during prescribed burns and synthesise our findings into useful applications for the prescribed fire community. We found that the average fuel load in tallgrass communities was 0.70 kg m–2. Fuel loads varied from 0.38 to 0.96 kg m–2. Average heat of combustion did not vary by species and was 17 334 kJ kg–1. A moisture content model was developed for fully cured, matted field grass, which was found to successfully predict moisture content of the surface layers of cured tallgrass in spring. We observed 25 head fires in spring-season prescribed burns with spread rates ranging from 4 to 55 m min–1. Flame front residence time averaged 27 s, varying significantly with fuel load but not fire spread rate. A grassland spread rate model from Australia showed the closest agreement with observed spread rates. These results provide prescribed-burn practitioners in Ontario better information to plan and deliver successful burns.


2021 ◽  
Author(s):  
Nisa Karimi ◽  
Daniel J. Larkin ◽  
Mary‐Claire Glasenhardt ◽  
Rebecca S. Barak ◽  
Evelyn W. Williams ◽  
...  

Plant Ecology ◽  
2013 ◽  
Vol 214 (9) ◽  
pp. 1169-1180 ◽  
Author(s):  
Jason E. Willand ◽  
Sara G. Baer ◽  
David J. Gibson ◽  
Ryan P. Klopf

2008 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Christine P Landry ◽  
Chantal Hamel ◽  
Anne Vanasse

Ridge-tilled corn (Zea mays L.) could benefit from arbuscular mycorrhizal (AM) fungi. Under low soil disturbance, AM hyphal networks are preserved and can contribute to corn nutrition. A 2-yr study was conducted in the St. Lawrence Lowlands (Quebec, Canada) to test the effects of indigenous AM fungi on corn P nutrition, growth, and soil P in field cropped for 8 yr under ridge-tillage. Phosphorus treatments (0, 17, 35 kg P ha-1) were applied to AM-inhibited (AMI) (fungicide treated) and AM non-inhibited (AMNI) plots. Plant tissue and soil were sampled 22, 48 and 72 days after seeding (DAS). P dynamics was monitored in situ with anionic exchange membranes (PAEM) from seeding to the end of July. AMNI plants showed extensive AM colonization at all P rates. At 22 DAS, AMI plants had decreased growth in the absence of P inputs, while AMNI plants had higher dry mass (DM) and P uptake in unfertilized plots. The PAEM was lower in the AMNI unfertilized soils in 1998 and at all P rates in 1999, indicating an inverse relationship between P uptake and PAEM. At harvest, grain P content of AMNI plants was greater than that of AMI plants. In 1998, only AMI plants had decreased yield in the absence of P fertilization. In 1999, AMNI plants produced greater grain yield than AMI plants at all P rates. AM fungi improve the exploitation of soil P by corn thereby maintaining high yields while reducing crop reliance on P inputs in RT. Key words: Arbuscular mycorrhizae, ridge-tillage, soil P dynamics, corn, P nutrition


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Veronika Řezáčová ◽  
Milan Řezáč ◽  
Hana Gryndlerová ◽  
Gail W. T. Wilson ◽  
Tereza Michalová

AbstractIn a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.


2011 ◽  
Vol 144 (12) ◽  
pp. 3127-3139 ◽  
Author(s):  
Diane L. Larson ◽  
JB. Bright ◽  
Pauline Drobney ◽  
Jennifer L. Larson ◽  
Nicholas Palaia ◽  
...  

2014 ◽  
Vol 23 (3) ◽  
pp. 220-227 ◽  
Author(s):  
Anna J. Herzberger ◽  
Scott J. Meiners ◽  
J. Brian Towey ◽  
Paula A. Butts ◽  
Daniel L. Armstrong

Sign in / Sign up

Export Citation Format

Share Document