Cell differentiation along multiple pathways accompanied by changes in histone acetylation status

2014 ◽  
Vol 92 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Soňa Legartová ◽  
Stanislav Kozubek ◽  
Michal Franek ◽  
Zbyněk Zdráhal ◽  
Gabriela Lochmanová ◽  
...  

Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

2018 ◽  
Vol 19 (8) ◽  
pp. 2425 ◽  
Author(s):  
Orazio Angelo Arcidiacono ◽  
Jana Krejčí ◽  
Jana Suchánková ◽  
Eva Bártová

Cell differentiation into cardiomyocytes requires activation of differentiation-specific genes and epigenetic factors that contribute to these physiological processes. This study is focused on the in vitro differentiation of mouse embryonic stem cells (mESCs) induced into cardiomyocytes. The effects of clinically promising inhibitors of histone deacetylases (HDACi) on mESC cardiomyogenesis and on explanted embryonic hearts were also analyzed. HDAC1 depletion caused early beating of cardiomyocytes compared with those of the wild-type (wt) counterpart. Moreover, the adherence of embryonic bodies (EBs) was reduced in HDAC1 double knockout (dn) mESCs. The most important finding was differentiation-specific H4 deacetylation observed during cardiomyocyte differentiation of wt mESCs, while H4 deacetylation was weakened in HDAC1-depleted cells induced to the cardiac pathway. Analysis of the effect of HDACi showed that Trichostatin A (TSA) is a strong hyperacetylating agent, especially in wt mESCs, but only SAHA reduced the size of the beating areas in EBs that originated from HDAC1 dn mESCs. Additionally, explanted embryonic hearts (e15) responded to treatment with HDACi: all of the tested HDACi (TSA, SAHA, VPA) increased the levels of H3K9ac, H4ac, H4K20ac, and pan-acetylated lysines in embryonic hearts. This observation shows that explanted tissue can be maintained in a hyperacetylation state several hours after excision, which appears to be useful information from the view of transplantation strategy and the maintenance of gene upregulation via acetylation in tissue intended for transplantation.


2019 ◽  
Author(s):  
Isabelle Leticia Zaboroski Silva ◽  
Anny Waloski Robert ◽  
Guillermo Cabrera Cabo ◽  
Lucia Spangenberg ◽  
Marco Augusto Stimamiglio ◽  
...  

AbstractPosttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA binding proteins (RBPs) that orchestrate the expression of these molecules. A family of RBPs, known as PUF (Pumilio-FBF), is highly conserved among species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first demonstrated the influence of the silencing of PUM1 and PUM2 on pluripotency genes. OCT4 and NANOG mRNA levels decreased significantly with the knockdown of Pumilio, suggesting that PUMILIO proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that the hESCs silenced for PUM1 and 2 exhibited an improvement in efficiency of in vitro cardiomyogenic differentiation. Using in silico analysis, we identified mRNA targets of PUM1 and PUM2 expressed during cardiomyogenesis. With the reduction of PUM1 and 2, these target mRNAs would be active and could be involved in the progression of cardiomyogenesis.


2020 ◽  
Vol 117 (27) ◽  
pp. 15673-15683
Author(s):  
Muhammad Mushtaq ◽  
Larysa Kovalevska ◽  
Suhas Darekar ◽  
Alexandra Abramsson ◽  
Henrik Zetterberg ◽  
...  

Stemness encompasses the capability of a cell for self-renewal and differentiation. The stem cell maintains a balance between proliferation, quiescence, and regeneration via interactions with the microenvironment. Previously, we showed that ectopic expression of the mitochondrial ribosomal protein S18-2 (MRPS18-2) led to immortalization of primary fibroblasts, accompanied by induction of an embryonic stem cell (ESC) phenotype. Moreover, we demonstrated interaction between S18-2 and the retinoblastoma-associated protein (RB) and hypothesized that the simultaneous expression of RB and S18-2 is essential for maintaining cell stemness. Here, we experimentally investigated the role of S18-2 in cell stemness and differentiation. Concurrent expression of RB and S18-2 resulted in immortalization ofRb1−/−primary mouse embryonic fibroblasts and in aggressive tumor growth in severe combined immunodeficiency mice. These cells, which express both RB and S18-2 at high levels, exhibited the potential to differentiate into various lineages in vitro, including osteogenic, chondrogenic, and adipogenic lineages. Mechanistically, S18-2 formed a multimeric protein complex with prohibitin and the ring finger protein 2 (RNF2). This molecular complex increased the monoubiquitination of histone H2ALys119, a characteristic trait of ESCs, by enhanced E3-ligase activity of RNF2. Furthermore, we found enrichment of KLF4 at theS18-2promoter region and that theS18-2expression is positively correlated withKLF4levels. Importantly, knockdown of S18-2 in zebrafish larvae led to embryonic lethality. Collectively, our findings suggest an important role for S18-2 in cell stemness and differentiation and potentially also in cancerogenesis.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E3 ◽  
Author(s):  
Daniel J. Guillaume ◽  
Su-Chun Zhang

✓ The primary therapeutic goal of embryonic stem cell (ESC) research is cell replacement therapy. During the last decade, great strides have been made in developing in vitro protocols for differentiating human ESCs into neuroepithelial progenitors. More recent progress has been made in further directing them into becoming cells with specialized regional and neurotransmitter identities, such as midbrain dopaminergic and spinal motor neurons. Along with directed differentiation, other current efforts are aimed at efficient enrichment, avoidance of immune rejection, demonstration of functional integration, genetic modification to regulate neurotransmitter and factor release, directed axon growth, in vivo cell tracking, and measures to ensure safety. This review will focus on the potential of ESCs as a source of transplantable cells for use in cell replacement therapy.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Wei Cui ◽  
Agnes Cheong ◽  
Yongsheng Wang ◽  
Yuran Tsuchida ◽  
Yong Liu ◽  
...  

Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.


2019 ◽  
Vol 35 (20) ◽  
pp. 4081-4088
Author(s):  
Hosein Fooladi ◽  
Parsa Moradi ◽  
Ali Sharifi-Zarchi ◽  
Babak Hosein Khalaj

Abstract Motivation The molecular mechanisms of self-organization that orchestrate embryonic cells to create astonishing patterns have been among major questions of developmental biology. It is recently shown that embryonic stem cells (ESCs), when cultured in particular micropatterns, can self-organize and mimic the early steps of pre-implantation embryogenesis. A systems-biology model to address this observation from a dynamical systems perspective is essential and can enhance understanding of the phenomenon. Results Here, we propose a multicellular mathematical model for pattern formation during in vitro gastrulation of human ESCs. This model enhances the basic principles of Waddington epigenetic landscape with cell–cell communication, in order to enable pattern and tissue formation. We have shown the sufficiency of a simple mechanism by using a minimal number of parameters in the model, in order to address a variety of experimental observations such as the formation of three germ layers and trophectoderm, responses to altered culture conditions and micropattern diameters and unexpected spotted forms of the germ layers under certain conditions. Moreover, we have tested different boundary conditions as well as various shapes, observing that the pattern is initiated from the boundary and gradually spreads towards the center. This model provides a basis for in-silico modeling of self-organization. Availability and implementation https://github.com/HFooladi/Self_Organization. Supplementary information Supplementary data are available at Bioinformatics online.


Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. 1460-1465 ◽  
Author(s):  
Alicia K. Michael ◽  
Ralph S. Grand ◽  
Luke Isbel ◽  
Simone Cavadini ◽  
Zuzanna Kozicka ◽  
...  

Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo–electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3558
Author(s):  
Chih-Yu Yeh ◽  
Wei-Han Huang ◽  
Hung-Chi Chen ◽  
Yaa-Jyuhn James Meir

During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast’s identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.


2022 ◽  
Author(s):  
Hajime Ozaki ◽  
Hidetaka Suga ◽  
Mayu Sakakibara ◽  
Mika Soen ◽  
Natsuki Miyake ◽  
...  

Abstract Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs) differentiate into AVP neurons, whereas human ESCs/induced pluripotent stem cells (iPSCs) die. Human ES/iPSCs are generally more similar to mouse epiblast stem cells compared to mouse ESCs, which are termed as primed and naive, respectively. In this study, we converted human FNDI-specific iPSCs from primed to naive cells, and found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.


Sign in / Sign up

Export Citation Format

Share Document