Fungal endophytes increase biomass production in pale swallow-wort (Vincetoxicum rossicum (Kleopow) Barbar.)

Botany ◽  
2021 ◽  
pp. 1-17
Author(s):  
Richard B. Dickinson ◽  
Robert S. Bourchier ◽  
Roberta R. Fulthorpe ◽  
Shu Yi Shen ◽  
Ian M. Jones ◽  
...  

Pale swallow-wort, Vincetoxicum rossicum (Kleopow) Barbar., is an invasive weed in the lower Great Lakes Basin of North America. We investigated the relationship between V. rossicum productivity and several environmental variables across 54 established V. rossicum populations in southern Ontario. Variables included climate measurements, soil characteristics (pH, texture, and nutrient status), habitat type, plant community, and the diversity of root-associated fungi. Vincetoxicum rossicum roots were collected at all 54 sites, and associated fungi were compared using terminal restriction fragment length polymorphism. Aboveground biomass of V. rossicum was measured at 23 sites with similar light regimes, allowing comparison between populations. Results suggested that abiotic soil variables, and habitat type have little effect on V. rossicum productivity. Aboveground biomass production was significantly correlated with precipitation, and the presence of fungal pathogens and dark septate endophytes. Annual precipitation and soil clay content were also positively correlated with the abundance of soil pathogens. Accumulation of these microbes may negatively affect co-occurring native plants and associated fungal partners. The presence of these fungal species in soil could be used as an indicator of site susceptibility to invasion by V. rossicum and assist in the development of management plans for this exotic vine.

2013 ◽  
Vol 152 (4) ◽  
pp. 602-615 ◽  
Author(s):  
B. R. MURPHY ◽  
F. M. DOOHAN ◽  
T. R. HODKINSON

SUMMARYFungal infections of barley have tremendous agricultural significance, and can be detrimental or beneficial. Beneficial root infections often involve endophytic fungi, but endophytic associations do not always confer benefits on their hosts. Endophyte infection can be negative, positive or neutral for the host. Benefits to barley and other plants infected with endophytic root fungi include an increase in seed yield, enhanced resistance to pathogens and improved stress tolerance. Even if an endophyte is never pathogenic, it is not always beneficial. The most important factors that determine the nature of the relationship are the specific combination of partner genotypes and developmental stage, and the ecological and environmental setting. The nutrient status of the plant and the availability of soil nutrients may have little effect on the degree of beneficial endophyte colonization and, unlike mycorrhizae, there is no apparent increase in endophyte-associated phosphorous transfer. There are indications of an association between successful endophyte colonization and high soil pH and clay content. The greatest benefits to the barley plant resulting from the associations seem to be obtained in abiotically stressed environments. Fungal infection may give the plant a greater ability to cope with the stress if the partners are in a balanced relationship. Each new study reveals an increasing diversity of beneficial fungal root endophytes and the full potential of these organisms is still to be determined. Further studies are urgently required to develop specific beneficial root–endophyte associations, or combination of them, that are tailored to individual barley varieties for maximum impact in agriculture.


2021 ◽  
Vol 25 (12) ◽  
pp. 6087-6106
Author(s):  
Veronika Forstner ◽  
Jannis Groh ◽  
Matevz Vremec ◽  
Markus Herndl ◽  
Harry Vereecken ◽  
...  

Abstract. Effects of climate change on the ecosystem productivity and water fluxes have been studied in various types of experiments. However, it is still largely unknown whether and how the experimental approach itself affects the results of such studies. We employed two contrasting experimental approaches, using high-precision weighable monolithic lysimeters, over a period of 4 years to identify and compare the responses of water fluxes and aboveground biomass to climate change in permanent grassland. The first, manipulative, approach is based on controlled increases of atmospheric CO2 concentration and surface temperature. The second, observational, approach uses data from a space-for-time substitution along a gradient of climatic conditions. The Budyko framework was used to identify if the soil ecosystem is energy limited or water limited. Elevated temperature reduced the amount of non-rainfall water, particularly during the growing season in both approaches. In energy-limited grassland ecosystems, elevated temperature increased the actual evapotranspiration and decreased aboveground biomass. As a consequence, elevated temperature led to decreasing seepage rates in energy-limited systems. Under water-limited conditions in dry periods, elevated temperature aggravated water stress and, thus, resulted in reduced actual evapotranspiration. The already small seepage rates of the drier soils remained almost unaffected under these conditions compared to soils under wetter conditions. Elevated atmospheric CO2 reduced both actual evapotranspiration and aboveground biomass in the manipulative experiment and, therefore, led to a clear increase and change in seasonality of seepage. As expected, the aboveground biomass productivity and ecosystem efficiency indicators of the water-limited ecosystems were negatively correlated with an increase in aridity, while the trend was unclear for the energy-limited ecosystems. In both experimental approaches, the responses of soil water fluxes and biomass production mainly depend on the ecosystems' status with respect to energy or water limitation. To thoroughly understand the ecosystem response to climate change and be able to identify tipping points, experiments need to embrace sufficiently extreme boundary conditions and explore responses to individual and multiple drivers, such as temperature, CO2 concentration, and precipitation, including non-rainfall water. In this regard, manipulative and observational climate change experiments complement one another and, thus, should be combined in the investigation of climate change effects on grassland.


2014 ◽  
Author(s):  
Stanley Freeman ◽  
Russell Rodriguez ◽  
Adel Al-Abed ◽  
Roni Cohen ◽  
David Ezra ◽  
...  

Major threats to agricultural sustainability in the 21st century are drought, increasing temperatures, soil salinity and soilborne pathogens, all of which are being exacerbated by climate change and pesticide abolition and are burning issues related to agriculture in the Middle East. We have found that Class 2 fungal endophytes adapt native plants to environmental stresses (drought, heat and salt) in a habitat-specific manner, and that these endophytes can confer stress tolerance to genetically distant monocot and eudicot hosts. In the past, we generated a uv non-pathogenic endophytic mutant of Colletotrichum magna (path-1) that colonized cucurbits, induced drought tolerance and enhanced growth, and protected 85% - 100% against disease caused by certain pathogenic fungi. We propose: 1) utilizing path-1 and additional endophtyic microorganisms to be isolated from stress-tolerant local, wild cucurbit watermelon, Citrulluscolocynthis, growing in the Dead Sea and Arava desert areas, 2) generate abiotic and biotic tolerant melon crop plants, colonized by the isolated endophytes, to increase crop yields under extreme environmental conditions such as salinity, heat and drought stress, 3) manage soilborne fungal pathogens affecting curubit crop species growing in the desert areas. This is a unique and novel "systems" approach that has the potential to utilize natural plant adaptation for agricultural development. We envisage that endophyte-colonized melons will eventually be used to overcome damages caused by soilborne diseases and also for cultivation of this crop, under stress conditions, utilizing treated waste water, thus dealing with the limited resource of fresh water.


2007 ◽  
Vol 7 (6) ◽  
pp. 985-988 ◽  
Author(s):  
Idi Abdelkader ◽  
Ali Ferchichi . ◽  
Mohamed Chaieb .

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1813
Author(s):  
Andreas Tewes ◽  
Carsten Montzka ◽  
Manuel Nolte ◽  
Gunther Krauss ◽  
Holger Hoffmann ◽  
...  

The Sentinel-2 (S2) Toolbox permits for the automated retrieval of leaf area index (LAI). LAI assimilation into crop simulation models could aid to improve the prediction accuracy for biomass at field level. We investigated if the combined effects of assimilation date and corresponding growth stage plus observational frequency have an impact on the crop model-based simulation of water stress and biomass production. We simulated winter wheat growth in nine fields in Germany over two years. S2 LAI estimations for each field were categorized into three phases, depending on the development stage of the crop at acquisition date (tillering, stem elongation, booting to flowering). LAI was assimilated in every possible combinational setup using the ensemble Kalman filter (EnKF). We evaluated the performance of the simulations based on the comparison of measured and simulated aboveground biomass at harvest. The results showed that the effects on water stress remained largely limited, because it mostly occurred after we stopped LAI assimilation. With regard to aboveground biomass, we found that the assimilation of only one LAI estimate from either the tillering or the booting to flowering stage resulted in simulated biomass values similar or closer to measured values than in those where more than one LAI estimate from the stem elongation phase were assimilated. LAI assimilation after the tillering phase might therefore be not necessarily required, as it may not lead to the desired improvement effect.


2005 ◽  
Vol 35 (12) ◽  
pp. 2942-2950 ◽  
Author(s):  
David I Forrester ◽  
Jürgen Bauhus ◽  
Annette L Cowie

A doubling of aboveground biomass production has been observed in mixtures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman when compared with monocultures after 11 years of growth. This study examined to what extent increased nitrogen (N) availability and accelerated rates of nutrient cycling may contribute to increased growth in mixtures. Monocultures of E. globulus (E) and A. mearnsii (A) and mixtures of these species were planted in a species replacement series: 100% E, 75% E + 25% A, 50% E + 50% A, 25% E + 75% A, and 100% A. Litterfall mass increased with aboveground biomass production and was highest in 50:50 mixtures and lowest in monocultures. Owing to higher N concentrations of A. mearnsii litter, N contents of annual litterfall were at least twice as high in stands containing A. mearnsii (32-49 kg·ha–1·year–1) as in E. globulus monocultures (14 kg·ha–1·year–1). Stands with A. mearnsii also cycled higher quantities of phosphorus (P) in annual litterfall than E. globulus monocultures. This study demonstrated that mixing A. mearnsii with E. globulus increased the quantity and rates of N and P cycled through aboveground litterfall when compared with E. globulus monocultures. Thus, mixed-species plantations appear to be a useful silvicultural system to improve nutrition of eucalypts without fertilization.


1995 ◽  
Vol 25 (1) ◽  
pp. 69-80 ◽  
Author(s):  
P.W. West ◽  
G.H.R. Osier

The factors determining individual tree growth response are examined during the 4 years following thinning in experiments in even-aged, 8- or 12-year-old regrowth Eucalyptusregnans F. Muell. forest at two sites in southern Australia. At one site, a vigorous understorey dominated by a sedge developed after the thinning. At that site, light-use efficiency by the trees was unaffected by thinning and the aboveground biomass production by the trees in the thinned stand was substantially less than that in the unthinned stand. At the other site, little understorey developed, light-use efficiency by trees in the thinned stand was greater than that in the unthinned stand, and aboveground biomass production was unaffected by thinning even though the leaf weight of the thinned stand was far below that of the unthinned stand. Where the understorey developed, it was concluded that it competed successfully with the trees for water, thereby reducing production in the thinned stand when compared with the unthinned stand. The individual tree growth response that occurred in the thinned stand at that site appeared to be due soley to the extra light available to individual trees following the canopy opening. Where the understorey did not develop, it was concluded that individual tree growth response was due not only to the extra light available to individual trees but also to the increased availability of belowground resources, most probably soil water. Application of a pre-existing stand growth model suggested that at that site the tendency for increased growth resulting from extra water availability in the thinned stand was just balanced by decreased growth due to lower radiation absorption by the reduced canopy, so that net production was unaffected by thinning.


Sign in / Sign up

Export Citation Format

Share Document