Quantum chemistry calculation of reaction pathways of carboxyl groups during coal self-heating

2017 ◽  
Vol 95 (8) ◽  
pp. 824-829 ◽  
Author(s):  
Xuyao Qi ◽  
Haibo Xue ◽  
Haihui Xin ◽  
Ziming Bai

During coal self-heating, reactions of carboxyl groups feature in the evolution of the spontaneous combustion of coal. However, their elementary reaction pathways during this process still have not been revealed. This paper selected the Ar–CH2–COOH as a typical carboxyl group containing structure for the analysis of the reaction pathways and enhancement effect on the coal self-heating process by quantum chemistry calculations. The results indicate that the hydrogen atoms in carboxyl groups are the active sites, which undergo the oxidation process and self-reaction process during coal self-heating. They both have two elementary reactions, namely (i) the hydrogen abstraction of –COOH by oxygen and the decarboxylation of the –COO· free radical and (ii) the hydrogen abstraction of –COOH and its pyrolysis. The total enthalpy change and activation energy of the oxidation process are 76.93 kJ/mol and 127.85 kJ/mol, respectively, which indicate that this process is endothermic and will occur at medium temperatures. For the hydrogen abstraction of –COOH by hydrocarbon free radicals, the thermal parameters are 53.53 kJ/mol and 56.13 kJ/mol, respectively, which has the same thermodynamic properties as the oxidation process. However, for the pyrolysis, the thermal parameters are –42.53 kJ/mol and 493.68 kJ/mol, respectively, and is thus exothermic and would not occur until the coal reaches high temperatures. They affect heat accumulation greatly, generate carbon dioxide, and provide new active centers for enhancing the coal self-heating process. The results would be helpful for further understanding of the coal self-heating mechanism.

2016 ◽  
Vol 94 (5) ◽  
pp. 494-500 ◽  
Author(s):  
Xuyao Qi ◽  
Haibo Xue ◽  
Haihui Xin ◽  
Cunxiang Wei

Hydroxyl groups are one of the key factors for the development of coal self-heating, although their detailed reaction pathways are still unclear. This study investigated the reaction pathways in coal self-heating by the method of quantum chemistry calculation. The Ar–CH2–CH(CH3)–OH was selected as a typical structure unit for the calculation. The results indicate that the hydrogen atoms in hydroxyl groups and R3–CH are the active sites. For the hydrogen atoms in hydroxyl groups, they are directly abstracted by oxygen. For hydrogen atoms in R3–CH, they are abstracted by oxygen at first and generate peroxy-hydroxyl free radicals, which abstract the hydrogen atoms in hydroxyl groups later. The reaction of R3–CH contains three elementary reactions, i.e., the hydrogen abstraction of R3–CH by oxygen, the conjugation reaction between the R3C■ and oxygen atom, and the hydrogen abstraction of –OH by hydroxyl free radicals. Then, the microstructure parameters, IRC pathways, and reaction dynamic parameters were respectively analyzed for the four reactions. For the hydrogen abstraction of –OH by oxygen, the enthalpy change and activation energy are 137.63 and 334.44 kJ/mol, respectively, which will occur at medium temperatures and the corresponding heat effect is great. For the reaction of R3–CH, the enthalpy change and the activation energy are −3.45 and 55.79 kJ/mol, respectively, which will occur at low temperatures while the corresponding heat influence is weak. They both affect heat accumulation and provide new active centers for enhancing the coal self-heating process. The results would be helpful for further understanding of the coal self-heating mechanism.


2021 ◽  
Vol 9 (9) ◽  
pp. 3324-3333 ◽  
Author(s):  
Ke Zhao ◽  
Ömer H. Omar ◽  
Tahereh Nematiaram ◽  
Daniele Padula ◽  
Alessandro Troisi

125 potential TADF candidates are identified through quantum chemistry calculations of 700 molecules derived from a database of 40 000 molecular semiconductors. Most of them are new and some do not belong to the class of donor–acceptor molecules.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1092
Author(s):  
Ban Chen ◽  
Xican Li ◽  
Xiaojian Ouyang ◽  
Jie Liu ◽  
Yangping Liu ◽  
...  

Synthetic arylamines and dietary phytophenolics could inhibit ferroptosis, a recently discovered regulated cell death process. However, no study indicates whether their inhibitory mechanisms are inherently different. Herein, the ferroptosis-inhibitory mechanisms of selected ferrostatin-1 (Fer-1) and two dietary stilbenes (piceatannol and astringin) were compared. Cellular assays suggested that the ferroptosis-inhibitory and electron-transfer potential levels decreased as follows: Fer-1 >> piceatannol > astringin; however, the hydrogen-donating potential had an order different from that observed by the antioxidant experiments and quantum chemistry calculations. Quantum calculations suggested that Fer-1 has a much lower ionization potential than the two stilbenes, and the aromatic N-atoms were surrounded by the largest electron clouds. By comparison, the C4′O-H groups in the two stilbenes exhibited the lowest bond disassociation enthalpies. Finally, the three were found to produce corresponding dimer peaks through ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis. In conclusion, Fer-1 mainly depends on the electron transfer of aromatic N-atoms to construct a redox recycle. However, piceatannol and astringin preferentially donate hydrogen atoms at the 4′-OH position to mediate the conventional antioxidant mechanism that inhibits ferroptosis, and to ultimately form dimers. These results suggest that dietary phytophenols may be safer ferroptosis inhibitors for balancing normal and ferroptotic cells than arylamines with high electron-transfer potential.


2011 ◽  
Vol 54 (25-26) ◽  
pp. 5200-5206 ◽  
Author(s):  
A. Ejlali ◽  
D.J. Mee ◽  
K. Hooman ◽  
B.B. Beamish

2019 ◽  
Vol 9 (22) ◽  
pp. 4805 ◽  
Author(s):  
Shuang Zhang ◽  
Naoki Kano ◽  
Kenji Mishima ◽  
Hirokazu Okawa

In order to obtain the adsorption mechanism and adsorption structures of Rare Earth Elements (REEs) ions adsorbed onto layered double hydroxides (LDH), the adsorption performance of LDH and ethylenediaminetetraacetic acid (EDTA) intercalated LDH for REEs was investigated by batch experiments and regeneration studies. In addition to adsorption capacity, the partition coefficient (PC) was also evaluated to assess their true performance metrics. The adsorption capacity of LDH increases from 24.9 μg·g−1 to 145 μg·g−1 for Eu, and from 20.8 μg·g−1 to 124 μg·g−1 for La by intercalating EDTA in this work; and PC increases from 45.5 μg·g−1·uM−1 to 834 μg·g−1·uM−1 for Eu, and from 33.6 μg·g−1·μM−1 to 405 μg·g−1·μM−1 for La. Comparison of the data indicates that the adsorption affinity of EDTA-intercalated LDH is better than that of precursor LDH no matter whether the concept of adsorption capacity or that of the PC was used. The prepared adsorbent was characterized by XRD, SEM-EDS and FT-IR techniques. Moreover, quantum chemistry calculations were also performed using the GAUSSIAN09 program package. In this calculation, the molecular locally stable state structures were optimized by density functional theory (DFT). Both the quantum chemistry calculations and the experimental data showed that REEs ions adsorbed by EDTA-intercalated LDH are more stable than those adsorbed by precursor LDH. Furthermore, the calculation results of adsorption and desorption rates show that adsorption rates are larger for Eu(III) than for La(III), which agrees with the experimental result that Eu(III) has a higher adsorption ability under the same conditions. The LDHs synthesized in this work have a high affinity for removing REEs ions.


Sign in / Sign up

Export Citation Format

Share Document