scholarly journals Evaluation of bitumen physical properties modified with waste plastic pipes

2018 ◽  
Vol 45 (6) ◽  
pp. 469-477 ◽  
Author(s):  
Sevil Köfteci ◽  
Perviz Ahmedzade ◽  
Taylan Günay

The aim of this paper is to examine the effects of ground plastic pipe wastes on bitumen. For this purpose, three modified bitumen samples with modifier contents of 2%, 4%, and 6% along with pure bitumen were prepared and tested. To understand the effect of modifier on bitumen, conventional bitumen tests, rotational viscosity tests at 135 °C and 165 °C, dynamic shear rheometer tests at three different frequencies that represent three different traffic speeds, and bending beam rheometer (BBR) test were performed. The BBR test results showed that resistance of pure bitumen to low-temperature cracking increased by using additives up to 4%. Based on the results of this study, it can be said that waste plastic pipes can be used as modifier for the bitumen binder. The 4% additive showed the best performance.

2014 ◽  
Vol 490-491 ◽  
pp. 138-141
Author(s):  
Kun Wang ◽  
Jing Ya Chen ◽  
Xiang Qu

Sasobit warm mix drainage asphalt pavement has become increasingly popular due to its environmental benefits and comfortable using effect. However, test results show that its low-temperature and anti-fatigue performance have a certain degree of reduced. To improve the performance of asphalt four different doses (1%, 3%, 5% and 7%) of salt are added to the Sasobit asphalt. Laboratory tests were used to simulate short and long term aging asphalt in the process of construction and using pavement. A series of binder tests including bending beam rheometer (BBR), dynamic shear rheometer (DSR) and Brookfield viscosity tests were conducted. Results show an increase of rutting performance for warm mix binders with Sasobit while asphalt with salt has similar high temperature performance to original asphalt. Unlike Sasobit which has a decrease of cracking performance for asphalt at low-temperature, salinity can greatly improve the Low-temperature performance. And the low-temperature cracking performance and anti-fatigue performance presents a tendency of climbing up first and then declining with the increase of salinity. The figure of viscosity-temperature curve shows that the optimum of salinity is 5%.Further more, asphalt with Sasobit and salt can gain better performance and same mixing and compaction effect in lower 20°C than hot mix asphalt without it.


2018 ◽  
Vol 7 (4.7) ◽  
pp. 13 ◽  
Author(s):  
G. H. Shafabakhsh ◽  
S. R.Sajadib ◽  
. .

Nowadays, one of the most challenging problems facing civil and transportation engineers, which consumes plenty of budgets (causes large amount of cost) for maintenance of asphalt roads, is asphalt destructions. Lots of efforts are done in order to increase the resistance and life span of asphalt, including development of bitumen properties. Bitumen is used broadly in road construction due to its appropriate properties; however, it has some major deficiencies which may lead to destructions of asphalt pavements. Therefore different bitumen modifications are implemented to achieve desired properties for different objectives, including (Such as) using rubber powder, waste materials, various polymers, etc. Recently, researchers are turning to nanotechnology to improve bitumen properties. Conducted studies on this topic (conducted research in this field) show that using modified bitumen by nanomaterial, increases the capacity of the pavement’s load bearing and decreases probable cracks due to fatigue during the operation life of the pavement. In this study, Nano Copper Oxide is used to develop rheological properties of bitumen. Nanoparticles have been added to bitumen with amount of 2.5, 3 and 5 percent and then Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR) experiments have been conducted to investigate the effects of using nanoparticles in pure bitumen. Results show that adding Copper Oxide nanoparticles to bitumen improves the performance of base bitumen, especially at middle and low temperatures. 


2019 ◽  
Vol 9 (8) ◽  
pp. 1567 ◽  
Author(s):  
Huang Xiaoming ◽  
Ismail Bakheit Eldouma

The overall objectives of this study were to determine the most appropriate additive for improving the physical properties and the medium- and high-temperature performances (mechanical performance) of asphalt binders. Three different types of modified binders were prepared: crumb rubber modifier (CRM), polypropylene (PP), and tafpack super (TPS), which had concentrations of 2%, 3%, 3.5%, and 4% by weight of asphalt binder, for each modifier. Their physical and rheological properties were evaluated by applying various tests such as ductility, rotational viscosity, toughness, and tenacity, as well as the dynamic shear rheometer (DSR) test. As a result, the physical properties of the modified bitumen binders were compared, as were the medium- and high-temperature performances (mechanical performance), which had temperatures of 58, 64, 70, 76, 82, and 88 °C, respectively. This was how the most appropriate modifier was determined. The results demonstrated that the asphalt binder properties significantly improved by utilizing CRM followed by PP and TPS modifiers. The increase in the rutting parameter (G*/sin(δ)) after asphalt modification indicated its excellent performance at both medium- and high-temperatures. Lastly, the CRM was determined as the most preferred additive because of its positive effect on the physical properties and enhancement of the medium- and high-temperature performance (mechanical performance).


2020 ◽  
Vol 993 ◽  
pp. 1361-1366
Author(s):  
Tian Wei Zhang ◽  
Jian Xin Li ◽  
San Peng Mao ◽  
Gui Tao Zheng ◽  
Jian Ying Yu

Fluid catalytic cracking (FCC) slurry is a by-product of petrochemical industry rich in aromatics. In this paper, the effect of FCC slurry on the physical properties of SBS modified bitumen was investigated by softening point, penetration, ductility and low temperature flexibility test. The influence of FCC slurry on the compatibility of SBS modified bitumen was evaluated by fluorescence microscope and segregation test. The results show that FCC slurry improves the softening point, penetration, ductility and low temperature flexibility of SBS modified bitumen. Fluorescence microscope showed that FCC slurry promotes the dispersion of SBS in bitumen, which is conducive to the formation of network crosslinking structure of SBS modified bitumen. The segregation test indicated that the compatibility of SBS with bitumen was improved with the content of FCC slurry increasing.


Author(s):  
Hannele K. Zubeck ◽  
Ted S. Vinson

A deterministic model and a probabilistic model were developed to predict low-temperature crack spacing as a function of time using thermal stress restrained specimen test results, pavement thickness and bulk density, pavement restraint conditions, and air temperature. The effect of aging on pavement properties was incorporated in the models by predicting the field aging with long-term oven aging treatment in the laboratory. The calculation of the crack spacing is based on the theory that the pavement slab cracks when the pavement temperature reaches the cracking temperature of the mixture and the slab is fully restrained. The deterministic model predicts crack spacing with time, whereas the probabilistic model predicts crack spacing and its variation with time and yields the reliability of the design with regard to a minimum acceptable crack spacing criterion defined by road authorities. The probabilistic model is recommended for use in predicting the low-temperature cracking of asphalt concrete mixtures.


2021 ◽  
Vol 902 ◽  
pp. 135-143
Author(s):  
Mohammad Ali Khasawneh ◽  
Khalid Ghuzlan ◽  
Nada Bani Melhem

Rutting, fatigue cracking and low temperature cracking are the most important distresses in asphalt pavements as a result of changes in rheological properties of asphalt binder. Many types of modifiers were used to enhance asphalt behavior at both low and high temperatures. In this study, carbon nanotubes (CNT) were used as one of many nanomaterials that take a large attention in the latest research related to asphalt modification against different types of distresses. Effect of CNT on rheological properties of asphalt binder was investigated by testing unmodified and CNT modified asphalt binders using two of Superpave devices: Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Penetration, softening point, flash point and rotational viscosity (RV) tests were carried out as well. CNT was added in 0.1%, 0.5% and 1% by weight of asphalt binder. It was found that adding CNT in 0.5% and 1% increase stiffness of asphalt and consequently asphalt pavement rutting resistance. On the other hand, this increase in stiffness affected pavement behavior adversely which is not desirable for fatigue and low temperature cracking. However, Superpave specifications were still satisfied and asphalt binder’s relaxation properties were improved upon CNT modification. It was eventually found that 0.5% of CNT is the optimum percentage for the best performance.


2012 ◽  
Vol 550-553 ◽  
pp. 2395-2401
Author(s):  
Jin Li

Analyze the rheology of recycled asphalts used by three rejuvenators:R1、R2、R3,the study of recycled asphalt's rheological behavior adopt BBR(Bending Beam Rheometer) and DSR(Dynamic Shear Rheometer). From the result of experiment:the usage of rejuvenator reduce the asphalt ability of anti-tracking under high temperature, some of them can even recover to the level of fresh asphalt;the mix of rejuvenators improve largely the asphalt ability of resistance to fatigue and the ability of anti-cracking under low temperature.


Author(s):  
Richard Fortier ◽  
Ted S. Vinson

The thermal stress restrained specimen test (TSRST) was used to evaluate the low-temperature cracking resistance and aging performance of modified asphalt concrete (AC) specimens. One aggregate, two asphalt cements (AAA-1 and AAB-1), five modifiers (latex polymer, ethylene acrylate copolymer, rubber powder, elastomer, and a blend of polypropylene and Kevlar fibers), and four 85°C oven aging levels (0, 5, 25, and 50 days) were considered. The results of the bending beam rheometer test (BBRT) on binders at −20°C showed that AAA-1 displayed a smaller creep stiffness than AAB-1. Only two modifiers increased the deflection and softness of AAB-1. The additives in AAA-1 did not improve its lowtemperature rheological behavior. These results served as the basis for comparison with those from the TSRST. The fracture strength and temperature of AC specimens are sensitive to asphalt type (4.11 MPa and −32.2°C for AAA-1, 3.28 MPa and −25.4°C for AAB-1) and degree of aging (from 4.11 to 2.04 MPa and from −32.2 to −21.2°C for AAA-1 for aging levels from 0 to 50 days at 85°C). Only one modifier in AAB-1 (among the two candidates identified with the BBRT) improved the low-temperature performance of the AC specimens. After 50 days of aging, no improvement was observed. The modified AAA-1 AC specimens displayed an optimum improvement in performance for aging levels of 25 and 50 days. Several modified AC specimens displayed a low-temperature failure without apparent fracture. This behavior would appear to be advantageous for the performance of pavements in cold regions.


2012 ◽  
Vol 178-181 ◽  
pp. 1383-1386 ◽  
Author(s):  
Peng Xiao ◽  
Mei Ping Wu ◽  
Shan Shan Shi ◽  
Dean Jiang

Brookfield Viscometer, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR) are employed to analyze properties of rubber asphalt and TOR rubber asphalt after water aging. Through simulating, the influences of parameter changes of water on the performances of asphalts after aging were studied. The results show that the PH value and sodium chloride content of water affects the aging properties of asphalt, and as the parameter changes, the high temperature performance of TOR rubber asphalt are better than rubber asphalt. DSR and BBR tests reveal that the higher the acidity (or the lower PH value) and the sodium chloride content of water are, the more seriously rubber asphalt and TOR rubber asphalt age in water aging; the lower the temperature is, the larger the S value and the smaller the m value become, and the worse the low temperature performance and dissipation of temperature stress of rubber asphalt and TOR rubber asphalt get.


Sign in / Sign up

Export Citation Format

Share Document