ASPHALT FATIGUE MODELING IN CONSTANT STRAIN TIME SWEEP TESTS BASED ON DISSIPATED ENERGY APPROACHES

Author(s):  
Mohammadreza Seif ◽  
Mohammad Molayem

This paper aims to develop asphalt binder fatigue models by time sweep tests under constant strain. By investigating of the fatigue life in neat and modified asphalts under linear and nonlinear viscoelastic responses, results were analyzed in terms of strain levels, asphalt kind and additive content. The dissipated energy and dissipated energy ratio concepts were utilized to develop the phenomenological models for estimating fatigue lives of asphalt binders. Results showed that the dissipated energy ratio based equations give relatively identical fatigue models irrespective of the strain level or asphalt binder type. Moreover, statistical analyses were performed to investigate the contribution of each parameter in the fatigue model prediction. A comparison was made between fatigue life predictions by means of traditional and energy based methods. Results proved that the fatigue life prediction models based on the concept of dissipated energy ratio follow a similar trend.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


Author(s):  
Arianna Stimilli ◽  
Cassie Hintz ◽  
Zhijun Li ◽  
Raul Velasquez ◽  
Hussain U. Bahia

Asphalt binder has the ability to self-heal during rest periods when repetitive loading is applied. Studying the effect of rest on fatigue law parameters provides useful insight into the healing capabilities of asphalt binders. Currently, standard testing and analysis procedures to quantify asphalt binder healing capability are limited and difficult to implement in practice. Fatigue is known to depend on both traffic loading and pavement structure. Power law relations (e.g., Nf = Aγ−B) are commonly used for fatigue analysis of pavement materials. Power laws are used to estimate fatigue life (i.e., number of cycles to failure, Nf) as a function of load amplitude (e.g., strain, γ), which is a reflection of the pavement structure. In this study, testing consisted of strain-controlled time sweeps in the dynamic shear rheometer with a single rest period inserted at a specified damage level. With the selected test, the effect of healing on the relationship between fatigue life and strain was investigated. Nine neat and modified binders were tested. Healing testing was conducted at multiple age levels and strains. Healing that resulted from a single rest period had an insignificant effect on fatigue performance compared with modification and oxidative aging. Although this paper highlights the challenges of using few rest periods to predict healing potential, preliminary results of testing with multiple rest periods show the importance of healing. Further investigation is needed to verify the effect of multiple rest periods on binder fatigue.


2012 ◽  
Vol 535-537 ◽  
pp. 1686-1692
Author(s):  
Yong Chun Qin ◽  
Sui Yuan Wang ◽  
Wei Zeng ◽  
Xiao Pei Shi ◽  
Jian Xu ◽  
...  

One of the main benefits advertised with the use of warm mix asphalt (WMA) is the decreasing aging of the asphalt binder resulting from the lower production temperature compared to conventional hot mix asphalt (HMA). Some tests were performed to determine the asphalt binder aging properties from WMA and HMA. Asphalt binders were recovered by extraction and distillation from asphalt mixtures premixed at different temperatures (140°C, 160°C, 180°C for HMA, 100°C and 120°C for WMA) in the mixing plant. Penetration@25°C, softening point (R&B) and rotational Brookfield viscosity tests were carried out. Results show that the aging of asphalt binder increases as the mixing temperature is elevated, and remarkably accelerates at the temperatures higher than 150°C. Warm mix asphalt (for example, mixing temperature at 100°Cor 120°C) can greatly reduce the aging of asphalt. Aging of the asphalt binder is one of the factors that would affect the mixture’s fatigue life. Four-point beam fatigue test samples were mixed and compacted at 140°C for HMA and 120°C for WMA, and fatigue tests with a frequency of 10 Hz and three constant strain levels (150 micro-strain, 300 micro-strain, 450 micro-strain, respectively) were performed. Results show that WMA’s fatigue life was higher than the control HMA, which indicates that it may reduce aging of asphalt binder and improve fatigue performance of asphalt mixture at lower production temperatures.


Author(s):  
Saqib Gulzar ◽  
B. Shane Underwood

Agencies have been increasing their use of polymer modified asphalt binders in recent years to address performance issues and lengthen the useful life of their pavements. When deployed these materials likely experience strain levels exceeding their linear viscoelastic (LVE) limits. The same situation exists in non-polymer modified asphalt binders as well, but the effect may be more pronounced in polymer modified systems because of their bi-phasic nature. In this study, terminally blended crumb rubber (CR-TB) modified asphalt is studied to understand and quantify the nonlinear viscoelastic response under large strains. The CR-TB binders are extensively used in pavements subjected to high vehicular loads and extreme climatic conditions; thereby, their response under large strains becomes more critical. The current standard characterization techniques are based on LVE response using small amplitude oscillatory shear rheology only and do not consider the behavior of binders under large strains. In this study, large amplitude oscillatory shear (LAOS) rheology is used as a framework to more thoroughly investigate the complete response of the CR-TB modified asphalt binder under large strains at 30°C, 40°C, 50°C, and 60°C and at the frequencies of 0.5, 1, and 5 Hz. The LAOS response is analyzed using Fourier-transform rheology and the orthogonal stress decomposition method involving Chebyshev polynomial representation. It is found that nonlinearity manifests greatly in this study material as strain levels increase and frequencies decrease. The relative nonlinearity increases with increasing strain amplitude and is more significant towards lower end of the tested temperature range. The CR-TB binder shows strain-stiffening/softening and shear-thinning/thickening behavior depending upon a specific temperature, strain level, and frequency.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Feipeng Xiao ◽  
Wenbin Zhao ◽  
Serji N. Amirkhanian

Aging is an important factor to affect the long-term performance of asphalt pavement. The fatigue life of a typical warm mix asphalt (WMA) is generally related to various factors of rheological and mechanical properties of the mixture. The study of the fatigue behavior of the specific rubberized WMA is helpful in recycling the scrap tires and saving energy in terms of the conventional laboratory aging process. This study explores the utilization of the conventional fatigue analysis approach in investigating the cumulative dissipated, stiffness, and fatigue life of rubberized asphalt concrete mixtures containing the WMA additive after a long-term aging process. The aged beams were made with one rubber type (−40 mesh ambient crumb rubber), two aggregate sources, two WMA additives (Asphamin and Sasobit), and tested at 5 and20ºC. A total of 55 aged fatigue beams were tested in this study. The test results indicated that the addition of crumb rubber extends the fatigue resistance of asphalt binder while WMA additive exhibits a negative effect. The study indicated that the WMA additive generally has an important influence on fatigue life. In addition, test temperature and aggregate source play an important role in determining the cumulative dissipated energy, stiffness, and fatigue life of an aged mixture.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3839
Author(s):  
Zhen Jia ◽  
Dongzhe Jia ◽  
Quansheng Sun ◽  
Yanqi Wang ◽  
Hongjian Ding

In order to solve issues related to bridge girders, expansion devices and road surfaces, as well as other structures that are prone to fatigue failure, a kind of fatigue-resistant elastic polyurethane concrete (EPUC) was obtained by adding waste rubber particles (40 mesh with 10% fine aggregate volume replacement rate) to conventional engineering polyurethane concrete (PUC). Based on the preparation and properties of EPUC, its constitutive relation was proposed through compression and tensile tests; then, a scanning electron microscope (SEM), an atomic force microscope (AFM) and a 3D non-contact surface profilometer were used to study the failure morphology and micromechanisms of EPUC. On this basis, four-point bending fatigue tests of EPUC were carried out at different temperature levels (−20 °C, 0 °C, 20 °C) and different strain levels (400 με~1200 με). These were used to analyze the stiffness modulus, hysteresis angle and dissipated energy of EPUC, and our results outline the fatigue life prediction models of EPUC at different temperatures. The results show that the addition of rubber particles fills the interior of EPUC with tiny elastic structures and effectively optimizes the interface bonding between aggregate and polyurethane. In addition, EPUC has good mechanical properties and excellent fatigue resistance; the fatigue life of EPUC at a room temperature of 600 με can grow by more than two million times, and it also has a longer service life and reduced disease frequency, as well as fewer maintenance requirements. This paper will provide a theoretical and design basis for the fatigue resistance design and engineering application of building materials. Meanwhile, the new EPUC material has broad application potential in terms of roads, bridges and green buildings.


Author(s):  
Karen S. Bonnetti ◽  
Kitae Nam ◽  
Hussain U. Bahia

Fatigue damage is a distress mechanism observed in asphalt, particularly at moderate to low temperatures. Preliminary studies have shown that unmodified asphalts are sensitive to fatigue and that the use of modifiers in asphalt binders can dramatically improve the binder’s response to fatigue. One of the major challenges encountered has been the lack of a definition of fatigue failure consistent with the actual performance of the material regardless of testing conditions. Superpave® asphalt binder specification has improved the evaluation of modified and neat asphalts, but the definition of failure for fatigue damage is still unclear. A selected set of unmodified and modified binders was chosen and tested under a range of loading modes, stress or strain amplitudes, temperatures, and frequencies. The fatigue data were analyzed using the dissipated energy ratio concept. Np, the number of cycles to crack propagation, was used as the fatigue criterion for the analysis. Using the initial dissipated energy per cycle ( Wi) as the main independent variable for modeling fatigue of binders appears to be a promising technique to normalize some of the testing conditions. The parameter Np20, defined as the number of cycles at which the dissipated energy ratio shows 20% deviation from the no-damage ratio, appears to be a promising parameter to define failure. Using Np20 values, all modification methods used showed improvement in the fatigue behavior of unmodified asphalts. The level of improvement, however, was highly dependent on the modifier type and the testing conditions. Initial dissipated energy, testing frequency, and temperature were found to be important factors. If damage parameters are used in future specifications of binders, testing frequency and testing stress or strain levels should be carefully selected to represent pavement structural conditions and traffic speed.


2020 ◽  
Vol 30 (1) ◽  
pp. 103-122
Author(s):  
Mana Motamedi ◽  
Gholamali Shafabakhsh ◽  
Mohammad Azadi

Asphalt concrete is composed of stone, sand, filler, and asphalt binder. Fatigue can be considered as a phenomenon affecting both the binder (asphalt binder or mastic) and the mixture. The purpose of this study was to investigate the fatigue damage response in asphalt binders, mastics, and asphalt concrete mixtures modified with nano-silica and synthesized polyurethane. The continuum damage mechanics method and phenomenological approaches in this study were used to investigate the fatigue performance. Obtained results indicated that the effect of the synthesized polyurethane on improving the fatigue life was far greater than that of nano-silica. The damage process in asphalt binders differed from that in the mastic and asphalt concrete mixture. Damage intensity parameter is an appropriate criterion for evaluating fatigue performance of asphalt binders and mastics. Concerning the fatigue of asphalt concrete mixture, the results of this study indicated a better convergence between the fatigue parameters of mastics and asphalt concrete mixture compared to asphalt binders, especially with increasing aging. Also, there was greater convergence between the fatigue life of the asphalt concrete mixture and asphalt binder and mastics in the method of continuum damage mechanics as compared to the phenomenological approach.


Author(s):  
Panos Apostolidis ◽  
Cor Kasbergen ◽  
Amit Bhasin ◽  
Athanassios Scarpas ◽  
Sandra Erkens

With the effort to precisely predict the lifetime of asphalt binders and subsequently optimize their utilization in a more economical way, the objective of this study was to introduce a new methodology to improve the fatigue characterization of asphalt binders through a new dynamic shear rheometer (DSR) sample testing geometry. Initially, numerical analyses were performed to study the geometry-related issues of a standard DSR sample on time sweep tests, and to assist in the effort to increase understanding of the DSR damage phenomena of asphalt samples. On the basis of these numerical analyses, a new testing geometry, the parallel hollow plate, was developed and its test results compared with the standard sample testing geometry. A single type of asphalt binder was assessed using amplitude sweep tests. The obtained results demonstrated a significant difference between the fatigue of the two sets of DSR sample geometries. On the basis of these, time sweep tests were conducted for the same sample geometries and the results demonstrated that the new testing geometry yields material response consistency under different loading conditions. The lifetime prediction of the standard parallel plates showed a significant difference with the newly developed DSR sample testing geometry by overestimating the total number of cycles until asphalt binder failure. The new testing geometry allowed the isolation of the damaged area of asphalt binder by localizing the shear stresses in the samples’ periphery.


Author(s):  
Jhony Habbouche ◽  
Ilker Boz ◽  
Brian K. Diefenderfer ◽  
Sungho Kim

Asphalt concrete (AC) overlays have been one of the most common treatments used by the Virginia Department of Transportation (VDOT) for maintaining/rehabilitating pavements. However, when the overlay is placed on existing composite pavements or cracked AC pavements, differential movements across any cracks or joints can result in physical tearing of the AC overlay. Thus, the long-term performance of many AC overlays will highly depend on their ability to resist cracking. The purpose of this study was to assess the viability of using high polymer-modified (HP) AC mixtures in Virginia as a crack mitigation technique or when deemed appropriate as a tool for increased resistance to rutting and cracking on higher volume facilities. Another objective was to assess the ability of various testing protocols to discern the performance of pavements through a comprehensive evaluation of three conventional polymer-modified (PMA) and five HP field-produced mixtures placed in Virginia. This included laboratory testing at multiple levels of complexity (basic, intermediate, and advanced) on collected asphalt binders, plant-produced asphalt mixtures, and field cores. The performance characteristics of PMA and HP mixes were evaluated in the laboratory in relation to durability and resistance to rutting and cracking. Based on the mixes tested, stone matrix asphalt (SMA) mixes showed better performance than dense-graded surface mixes (SM) regardless of the asphalt binder type. Moreover, HP mixes showed better performance than PMA mixes regardless of the mixture type. Overall, SMA-HP mixes showed the most promising performance among all evaluated mixes.


Sign in / Sign up

Export Citation Format

Share Document