Modelling Short-Term Monotonic Response of Timber-Concrete Composite Structures

Author(s):  
Cong Liu ◽  
Anca-Cristina Ferche ◽  
Frank Vecchio

Timber-concrete composite is an efficient hybrid construction material which exploits the advantageous properties of timber and concrete. The use of shear connectors enables the two dissimilar materials to act together, resulting in an increase in global stiffness as well as load-carrying capacity. As this composite material is becoming increasingly more popular in the construction industry, there is a need to develop analysis tools which have general applicability to timber-concrete composite systems with variations in loading schemes, specimen configurations, materials, and types of shear connectors. One such tool, a generic two-dimensional nonlinear finite element model, is proposed in this paper; it is verified through numerical simulations of six experiment series carried out by other researchers. Good agreement between experimentally observed behaviour and numerical simulations was generally obtained.

Author(s):  
M. M. Islam ◽  
Rakesh K. Kapania

In a test-fixture that the authors were using, steel tabs adhesively bonded to an aluminum panel debonded before the design load on the real test panel was fully applied. Therefore, studying behavior of adhesive joints for joining dissimilar materials was deemed to be necessary. To determine the failure load responsible for debonding of adhesive joints of two dissimilar materials, stress distributions in adhesive joints as obtained by a nonlinear finite element model of the test-fixture were studied under a gradually increasing compression-shear load. It was observed that in-plane stresses were responsible for the debonding of the steel tabs. To achieve a better understanding of adhesive joints of dissimilar materials, finite element models of adhesive lap joints and Asymmetric Double Cantilever Beam (ADCB) were studied, under loadings similar to the loading faced by the test-fixture. The analysis was performed using ABAQUS, a commercially available software, and the cohesive zone modeling was used to study the debonding growth.


2008 ◽  
Vol 33-37 ◽  
pp. 321-326 ◽  
Author(s):  
Xiu Gen Jiang ◽  
Yang Yang ◽  
Feng Jie Zhang ◽  
Jin San Ju ◽  
Xiao Chuan You

Nonlinear finite element model analysis of the casing plug joints of steel tubular has been realized by ANSYS software. The law of load-carrying capability and stiffness of joint are separately gained by changing the ratio of length and diameter (R/L) and the ratio of the casing length and the main tube length (l/L). The influence of the casing thickness on the load-carrying capability and stiffness are also discussed. The results indicated that the load-carrying capability and stiffness of the joints both increase with the ratio(R/L) increment and the ratio of the casing length and main tube length (l/L). When the main tube thickness is equal to casing thickness, the load-carrying capacity of joints achieves the most.


2010 ◽  
Vol 168-170 ◽  
pp. 2303-2307 ◽  
Author(s):  
Mahdi Shariati ◽  
Nor Hafizah Ramli Sulong ◽  
Hamid Sinaei ◽  
Mohammad Mehdi Arabnejad Khanouki ◽  
Payam Shafigh

This paper describes five push-out tests carried out at the University of Malaya using channel shear connector. The tests study experimentally and analytically, the behavior of channel shear connectors embedded in normal and light weight aggregate concrete (LWAC). Limited push-out tests are used to measure the accuracy of a proposed nonlinear finite element model for typical push-out test specimens. Using this model, an extensive parametric study performed to arrive at prediction for shear capacity of channel connectors in LWAC. An equation is suggested for the shear capacity of these connectors in LWAC.


2019 ◽  
Vol 29 (3) ◽  
pp. 228-240 ◽  
Author(s):  
Sangeetha Palanivelu

Abstract Steel-concrete composite structures are widely used in the current construction of bridges and multi-storey buildings. The effect of shear connectors in a cold-formed steel-composite beam was studied under flexure. The number of channel connectors in the specimen was varied and the same was compared with a specimen without shear connectors. The performance and failure of cold-formed steel-composite beams were then studied. The presence of shear connectors in the tension zone prevents the formation of cracks which are the major cause of failure in a beam subjected to bending. The load-carrying capacity is greater in a composite beam and an increase in the number of channel connectors from one to five increases the load-carrying capacity by 60 % as compared to a specimen without a connector. A composite beam with five connectors is more ductile, with a ductility factor of 14. The Composite beams were also analysed using the finite element software ANSYS and were found to have good agreement with the experimental results.


2012 ◽  
Vol 166-169 ◽  
pp. 2851-2854 ◽  
Author(s):  
Yi Hong Guo ◽  
Zhen Qing Wang

Shear connectors are usually used to connect two different structural materials and to transfer longitudinal shear forces across the materials interface in composite structures. This paper presents an experimental study on the behavior of shear connectors in UHPFRC-NSC composite structure. A new experimental installation (The NSC block is laid on the supporting deck, and the higher UHPFRC block is cantilever, meanwhile the top side of the NSC block is constrained.) is applied. A modified formula that it is proposed to calculate the load carrying capacity of shear connector is given. The experimental results are in good agreement with the calculated results.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


2020 ◽  
pp. 136943322098166
Author(s):  
Weiwei Lin

In this study, straight composite steel-concrete beams were tested to investigate their mechanical performance under combined negative bending and torsional moments. Two specimens were used in this study, and different ratios between the applied negative bending and torsional moments were induced. Load and deflection relationships, strain development on the steel main girder and shear connectors (stud), and the slip development on the steel-concrete interface were recorded in the test and reported in this paper. The results indicate that increase of torsional moment will result in the significant decrease of the load-carrying capacities (e.g. yield load and ultimate load) of the specimens. It was also found that the normal strains of stud shear connectors in such beams are very large and non-negligible compared to their shear strains. In addition, the maximum interface slip was found occurring at around the 1/4 span, and the support conditions and serious crack of the concrete were considered to be the main causes. The research results obtained in this study can provide references for the design and analysis of steel-concrete composite beams subjected to the combined negative bending and torsional moments.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.


Sign in / Sign up

Export Citation Format

Share Document