scholarly journals Weakening portfolio effect strength in a hatchery-supplemented Chinook salmon population complex

2015 ◽  
Vol 72 (12) ◽  
pp. 1860-1875 ◽  
Author(s):  
William H. Satterthwaite ◽  
Stephanie M. Carlson

Biocomplexity contributes to asynchronous population dynamics, buffering stock complexes in temporally variable environments, a phenomenon referred to as a “portfolio effect”. We previously revealed a weakened but persistent portfolio effect in California’s Central Valley fall-run Chinook salmon (Oncorhynchus tshawytscha), despite considerable degradation and loss of habitat. Here, we further explore the timing of changes in variability and synchrony and relate these changes to factors hypothesized to influence variability in adult abundance, including hatchery release practices and environmental variables. We found evidence for increasing synchrony among fall-run populations that coincided temporally with increased off-site hatchery releases into the estuary but not with increased North Pacific environmental variability (measured by North Pacific Gyre Oscillation), nor were common trends well explained by a suite of environmental covariates. Moreover, we did not observe a simultaneous increase in synchrony in the nearby Klamath–Trinity system, where nearly all hatchery releases are on-site. Wavelet analysis revealed that variability in production was higher and at a longer time period later in the time series, consistent with increased environmental forcing and a shift away from dynamics driven by natural spawners.

2011 ◽  
Vol 68 (9) ◽  
pp. 1579-1589 ◽  
Author(s):  
Stephanie Marie Carlson ◽  
William Hallowell Satterthwaite

Recent research has highlighted the importance of interpopulation diversity in fostering the stability of population complexes. Here we focus on California’s recently collapsed fall-run Chinook salmon ( Oncorhynchus tshawytscha ) and ask whether portfolio effect induced buffering is observed across the complexity hierarchy from individual populations to populations within a river basin (Sacramento, San Joaquin) to the entire Central Valley. Some buffering was observed when comparing the coefficient of variation in adult returns to a given river basin with its constituent populations but not when comparing returns to the entire Central Valley with its constituent basins because of disproportionately many fish returning to the Sacramento Basin. Moreover, we report that positive correlations in population dynamics between rivers were stronger in the last 25 years of the study compared with the first 25 years. Together, these results suggest evidence of only a weak portfolio effect that has deteriorated in recent years. Nonetheless, we also report that correlations between rivers decreased significantly with distance, suggesting that some biocomplexity remains. Our results suggest that the greatest potential for strengthening the portfolio effect would come through restoration of San Joaquin Basin populations, which at low abundance currently contribute little to the overall buffering capacity despite low cross-basin correlations.


2003 ◽  
Vol 60 (8) ◽  
pp. 971-985 ◽  
Author(s):  
Kevin S McCann ◽  
Louis W Botsford ◽  
Alan Hasting

In searching for causes of fluctuations in marine populations, investigators often assume that populations respond on the same time scale as the environmental forcing period, but this may not hold true. Here we show how the response of populations to variable recruitment changes with the degree of overcompensation using models of two species with similar age structure but different density-dependent recruitment, chinook salmon (Oncorhynchus tshawytscha) and Dungeness crab (Cancer magister). For compensatory density dependence, as in chinook salmon, variability in recruitment tends to follow the period in environmental variability over all time scales. For overcompensatory density dependence, as in Dungeness crab, variability in recruitment follows the environmental variability only for periods much greater than the maximum age of the population. For periods in environmental variability less than the maximum age, the dominant period of the population response is slightly larger than the length of the age structure. Here, strong overcompensatory recruitment acts to filter out potentially good recruitment years, resulting in dominant periodicities slightly larger than the length of the age structure. These mechanisms appear to explain the differences between observed spectra of Dungeness crab and chinook salmon.


2019 ◽  
Vol 77 (4) ◽  
pp. 1503-1515 ◽  
Author(s):  
William H Satterthwaite ◽  
Kelly S Andrews ◽  
Brian J Burke ◽  
Jennifer L Gosselin ◽  
Correigh M Greene ◽  
...  

Abstract Preseason abundance forecasts drive management of US West Coast salmon fisheries, yet little is known about how environmental variability influences forecast performance. We compared forecasts of Chinook salmon (Oncorhynchus tshawytscha) against returns for (i) key California-Oregon ocean fishery stocks and (ii) high priority prey stocks for endangered Southern Resident Killer Whales (Orcinus orca) in Puget Sound, Washington. We explored how well environmental indices (at multiple locations and time lags) explained performance of forecasts based on different methods (i.e. sibling-based, production-based, environment-based, or recent averages), testing for nonlinear threshold dynamics. For the California stocks, no index tested explained >50% of the variation in forecast performance, but spring Pacific Decadal Oscillation and winter North Pacific Index during the year of return explained >40% of the variation for the sibling-based Sacramento Fall Chinook forecast, with nonlinearity and apparent thresholds. This suggests that oceanic conditions experienced by adults (after younger siblings returned) have the most impact on sibling-based forecasts. For Puget Sound stocks, we detected nonlinear/threshold relationships explaining >50% of the variation with multiple indices and lags. Environmental influences on preseason forecasts may create biases that render salmon fisheries management more or less conservative, and therefore could motivate the development of ecosystem-based risk assessments.


2013 ◽  
Vol 70 (1) ◽  
pp. 128-141 ◽  
Author(s):  
Wesley A. Larson ◽  
Fred M. Utter ◽  
Katherine W. Myers ◽  
William D. Templin ◽  
James E. Seeb ◽  
...  

We genotyped Chinook salmon (Oncorhynchus tshawytscha) from the Bering Sea and North Pacific Ocean for 43 single-nucleotide polymorphisms (SNPs) to investigate seasonal distribution and migration patterns. We analyzed 3563 immature fish from 22 spatiotemporal strata; composition analyses were performed using genotype data from spawning stocks spanning the species range. Substantial variation in stock composition existed among spatial and seasonal strata. We inferred patterns of seasonal migration based upon these data along with data from previous tag, scale, and parasite studies. We found that stocks from western Alaska and Yukon River overwinter on the Alaska continental shelf then travel to the middle and western Bering Sea during spring–fall. Stocks from California to Southeast Alaska were distributed in Gulf of Alaska year-round, with a substantial portion of this group migrating northward to the eastern Bering Sea during spring–fall. Proportions of Russian stocks increase when moving east to west in both the Bering Sea and North Pacific Ocean. These data can be used to better understand the impacts of fisheries and climate change on this valuable resource.


2010 ◽  
Vol 67 (10) ◽  
pp. 1549-1565 ◽  
Author(s):  
R. Bruce MacFarlane

The greatest rates of energy accumulation and growth in subyearling Chinook salmon ( Oncorhynchus tshawytscha ) occurred during the first month following ocean entry, supporting the importance of this critical period. Data from an 11-year study in the coastal ocean off California and the San Francisco Estuary revealed that juvenile salmon gained 3.2 kJ·day–1 and 0.8 g·day–1, representing 4.3%·day–1 and 5.2% day–1, respectively, relative to estuary exit values. Little gain in energy (0.28 kJ·day–1) or size (0.07 g·day–1) occurred in the estuary, indicating that the nursery function typically ascribed to estuaries can be deferred to initial ocean residence. Calculated northern anchovies ( Engraulis mordax ) equivalents to meet energy gains were one anchovy per day in the estuary (8% body weight·day–1) and about three per day immediately following ocean entry (15% body weight·day–1). Energy content in the estuary was positively related to higher salinity and lower freshwater outflow, whereas in the ocean, cooler temperatures, lower sea level, and greater upwelling resulted in greater gains. These results suggest that greater freshwater flows, warmer sea temperatures, and reduced or delayed upwelling, all of which are indicated by some (but not all) climate models, will likely decrease growth of juvenile Chinook salmon, leading to reduced survival.


2000 ◽  
Vol 57 (5) ◽  
pp. 915-927 ◽  
Author(s):  
Michael A Banks ◽  
Vanessa K Rashbrook ◽  
Marco J Calavetta ◽  
Cheryl A Dean ◽  
Dennis Hedgecock

We use 10 microsatellite DNA markers to assess genetic diversity within and among the four runs (winter, spring, fall, and late fall) of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Forty-one population samples are studied, comprising naturally spawning and hatchery stocks collected from 1991 through 1997. Maximum likelihood methods are used to correct for kinship in juvenile samples and run admixture in adult samples. Through simulation, we determine the relationship between sample size and number of alleles observed at polymorphic microsatellite markers. Most samples have random-mating equilibrium proportions of single and multilocus genotypes. Temporal and spatial genetic heterogeneity is minimal among samples within subpopulations. An FST of 0.082 among subpopulations, however, indicates substantial divergence among runs. Thus, with the exception of our discovery of two distinct lineages of spring run, genetic structure accords with the diverse chinook life histories seen in the Central Valley and provides a means for discrimination of protected populations.


2014 ◽  
Vol 71 (8) ◽  
pp. 1209-1219 ◽  
Author(s):  
Timothy D. Mussen ◽  
Oliver Patton ◽  
Dennis Cocherell ◽  
Ali Ercan ◽  
Hossein Bandeh ◽  
...  

Entrainment through water-diversion structures is a major passage challenge for fishes in watersheds worldwide. Behavioral guidance devices may be effective in passing fish by diversion inlets, thereby decreasing entrainment without reducing water-diversion rates, but data on their effectiveness is limited. In California’s central valley, out-migrating Chinook salmon (Oncorhynchus tshawytscha) are a species at risk for entrainment through unscreened, small-scale water-diversion pipes. Therefore, we tested entrainment susceptibility and behavior of juvenile Chinook salmon in a large-river-simulation flume at a “river” velocity of 0.15 m·s–1 with a 0.46 m diameter pipe diverting water at 0.57 m3·s–1, during the day and night. Compared with control conditions (no fish deterrent devices present), mean fish entrainment increased by 61% (day) and 43% (night) when underwater strobe lights were active, decreased by 30% when using a metal vibrating (12 Hz) ring during the night, and was unaffected by velocity cap attachments. Fish entrainments started at water velocities of 0.8 m·s–1 and decreased by 54% from spring to summer, possibly resulting from decreased pipe-passage frequency and smaller fish-school sizes. Our findings suggest that substantial entrainment can occur if fish repeatedly pass within 1.5 m of active unscreened diversions, with an estimated 50% of fish lost after encountering 18 pipes in spring and 50 pipes in summer.


2014 ◽  
Vol 71 (7) ◽  
pp. 1671-1682 ◽  
Author(s):  
D. Patrick Kilduff ◽  
Louis W. Botsford ◽  
Steven L. H. Teo

Abstract Knowledge of the spatial and temporal extent of covariation in survival during the critical ocean entry stage will improve our understanding of how changing ocean conditions influence salmon productivity and management. We used data from the Pacific coastwide coded-wire tagging program to investigate local and regional patterns of ocean survival of Chinook salmon (Oncorhynchus tshawytscha) from the Central Valley of California to southeastern Alaska from 1980–2006. Ocean survival of fish migrating as subyearlings covaried strongly from Vancouver Island to California. Short-term correlations between adjacent regions indicated this covariability increased, beginning in the early 1990s. Chinook salmon survivals exhibited a larger spatial scale of variability (50% correlation scale: 706 km) than those reported for other northeast Pacific Ocean salmon. This scale is similar to that of environmental variables related to ecosystem productivity, such as summer upwelling (50% correlation scale: 746 km) and sea surface temperature (50% correlation scale: 500–600 km). Chinook salmon ocean survival rates from southeastern Alaska and south of Vancouver Island were not inversely correlated, in contrast to earlier observations based on catch data, but note that our data differ in temporal and spatial coverage from those studies. The increased covariability in Chinook salmon ocean survival suggests that the marine phase contributes little to the reduction in risk across populations attributable to the portfolio effect. In addition, survival of fish migrating as yearlings from the Columbia River covaried with Chinook salmon survival from the northernmost regions, consistent with our understanding of their migration patterns.


1987 ◽  
Vol 44 (6) ◽  
pp. 1213-1220 ◽  
Author(s):  
Robert G. Kope

A separable virtual population analysis model is developed for Pacific salmon which utilizes aged catch and spawning escapement data. This model is applied to marked chinook salmon, Oncorhynchus tshawytscha, from California's Central Valley hatcheries using weighted least squares criteria for goodness of fit. Structural inadequacies of the model apparently produce discrepancies between predicted values and observed data that are of about the same magnitude as the observational errors in estimating the recoveries of marked fish. Some of the inadequacy of the model may be due to environmentally induced variability in population parameters, but for the marked fish used in this analysis, some of the variability is probably due to year-to-year variability in hatchery practices. From this analysis it appears that although nominal fishing effort has been relatively stable or even declining in recent years, fishing mortality has been increasing with the exception of 1983 and 1984.


2021 ◽  
Author(s):  
Colby L. Hause ◽  
Gabriel P. Singer ◽  
Rebecca A. Buchanan ◽  
Dennis E. Cocherell ◽  
Nann A. Fangue ◽  
...  

AbstractExtirpation of the Central Valley spring-run Chinook Salmon ESU (Oncorhynchus tshawytscha) from the San Joaquin River is emblematic of salmonid declines across the Pacific Northwest. Habitat restoration and fish reintroduction efforts are ongoing, but recent telemetry studies have revealed low outmigration survival of juveniles to the ocean. Previous investigations have focused on modeling survival relative to river discharge and geographic regions, but have largely overlooked the effects of habitat variability. To evaluate the link between environmental conditions and survival of juvenile spring-run Chinook Salmon, we combined high spatial resolution habitat mapping approaches with acoustic telemetry along a 150 km section of the San Joaquin River during the spring of 2019. While overall outmigration survival was low (5%), our habitat-based classification scheme described variation in survival of acoustic-tagged smolts better than other candidate models based on geography or distance. There were two regional mortality sinks evident along the longitudinal profile of the river, revealing poor survival in areas that shared warmer temperatures but that diverged in chlorophyll-α, fDOM, turbidity and dissolved oxygen levels. These findings demonstrate the value of integrating river habitat classification frameworks to improve our understanding of survival dynamics of imperiled fish populations. Importantly, our data generation and modeling methods can be applied to a wide variety of fish species that transit heterogeneous and diverse habitat types.


Sign in / Sign up

Export Citation Format

Share Document