scholarly journals Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis

2017 ◽  
Vol 74 (12) ◽  
pp. 2005-2029 ◽  
Author(s):  
Diane M. Orihel ◽  
Helen M. Baulch ◽  
Nora J. Casson ◽  
Rebecca L. North ◽  
Chris T. Parsons ◽  
...  

Many physical, chemical, and biological processes in freshwater ecosystems mobilize the nutrient phosphorus (P) from sediments, which in turn may contribute to the formation of harmful algal blooms. Here, we critically reviewed internal P loading in Canadian fresh waters to understand the geographic patterns and environmental drivers of this important process. From 43 publications, we consolidated 618 estimates of internal P loading from Canadian freshwater ponds, lakes, reservoirs, and coastal wetlands (n = 70). Expressed in terms of total P, short-term gross rates in sediment samples (Lgross) ranged from −27 to 54 mg·m−2·day−1(n = 461), while long-term net rates in whole ecosystems (Lnet) ranged from −1694 to 10 640 mg·m−2·year−1(n = 157). The main environmental drivers of this variation were oxygen, pH, geology, and trophic state. Internal P loading tended to be higher during the open-water season and most prominent in small prairie lakes. Priorities for future research on internal P loading should include resolving methodological problems, assessing the relative importance of different mechanisms, examining the influence of anthropogenic activities, and quantifying rates in understudied ecosystems.

2020 ◽  
Vol 42 (2) ◽  
pp. 119-134 ◽  
Author(s):  
Javier Paredes-Mella ◽  
Daniel Varela ◽  
Pamela Fernández ◽  
Oscar Espinoza-González

Abstract Alexandrium catenella, the main species associated with harmful algal blooms, has progressively increased its distribution through one of the most extensive and highly variable fjord systems in the world. In order to understand this successful expansion, we evaluated the effects of different salinities, light intensity, temperatures, nitrogen (N) forms and nitrogen/phosphate (N:P) ratio levels on the growth performance, using clones isolated from different locations across its wide geographic distribution. Results showed that the growth responses were plastic and, in some cases, different reaction norms among clones were observed. Despite plasticity, the optimal growth of A. catenella (i.e. highest growth rate and highest maximal cells density) was reached within a narrow thermal range (12–15°C), while salinity (20–30 PSU) and light intensity (20–120 μmol m−2 s−1) ranges were wider. These results are partially consistent with the highest cell densities recorded in the field. Furthermore, optimal growth was reached using reduced forms of nitrogen (i.e. urea and NH4+) and in unbalanced N:P ratios (18:1 and 30:1). These characteristics likely allow A. catenella to grow in highly variable environmental conditions and might partly explain the recent expansion of this species.


2022 ◽  
Author(s):  
Han Gao ◽  
Ze Zhao ◽  
Lu Zhang ◽  
Feng Ju

Cyanobacterial harmful algal blooms (CyanoHABs) are globally intensifying and exacerbated by climate change and eutrophication. However, microbiota assembly mechanisms underlying CyanoHABs remain scenario specific and elusive. Especially, cyanopeptides, as a group of bioactive secondary metabolites of cyanobacteria, could affect microbiota assembly and ecosystem function. Here, the trajectory of cyanopeptides were followed and linked to microbiota during Microcystis-dominated CyanoHABs in lake Taihu, China. The most abundant cyanopeptide classes detected included microginin, spumigin, microcystin, nodularin and cyanopeptolin with total MC-LR-equivalent concentrations between 0.23 and 2051.54 ppb, of which cyanotoxins beyond microcystins (e.g., cyanostatin B and nodularin_R etc.) far exceeded reported organismal IC50 and negatively correlated with microbiota diversity, exerting potential collective eco-toxicities stronger than microcystins alone. The microbial communities were differentiated by size fraction and sampling date throughout CyanoHABs, and surprisingly, their variances were better explained by cyanopeptides (19-38%) than nutrients (0-16%). Cyanopeptides restriction (e.g., inhibition) and degradation are first quantitatively verified as the deterministic drivers governing community assembly, with stochastic processes being mediated by interplay between cyanopeptide dynamics and lake microbiota. This study presents an emerging paradigm in which cyanopeptides restriction and degradation co-mediate lake water microbiota assembly, unveiling new insights about the ecotoxicological significance of CyanoHABs to freshwater ecosystems.


Publications ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 50
Author(s):  
Carlos Yure B. Oliveira ◽  
Cicero Diogo L. Oliveira ◽  
Marius N. Müller ◽  
Elizabeth P. Santos ◽  
Danielli M. M. Dantas ◽  
...  

Understanding the evolution of scientific literature is a critical and necessary step for the development and strengthening of a research field. However, an overview of global dinoflagellate research remains unavailable. Herein, global dinoflagellate research output was analyzed based on a scientometric approach using the Scopus data archive. The basic characteristics and worldwide interactions of dinoflagellate research output were analyzed to determine the temporal evolution and new emerging trends. The results confirm that dinoflagellate research output, reflected in the number of publications, is a fast-growing area since the mid-1990s. In total, five research subareas emerged using a bibliometric keywords analysis: (1) “symbiosis with coral reefs”, (2) “phylogeny”, (3) “palynology”, (4) “harmful algal blooms” and (5) “nutrition strategies”. Dinoflagellate publications were modeled by fish production (both aquaculture and fisheries) and economic and social indexes. Finally, directions for future research are proposed and discussed. The presented scientometric analysis confirms that dinoflagellate research is an active and important area with focus on mitigating economic impacts, especially in regard to fish production.


2021 ◽  
Author(s):  
Ichiro Imai ◽  
Nobuharu Inaba ◽  
Keigo Yamamoto

AbstractThe presence and status of harmful algal blooms (HABs) in Japan are reviewed, revealing a decrease in red tides; however, toxic blooms are found to be increasing in western Japan. Environmentally friendly control strategies against HABs are also compared with integrated agricultural pest management. Very high densities (105–108 CFU/g) of algicidal and growth-inhibiting bacteria were found in biofilm on seagrass and seaweed surfaces and in surrounding coastal seawater. The situation in freshwater ecosystems is similar to coastal seas for toxic cyanobacterium, Microcystis aeruginosa, and aquatic plants. These findings offer new insights into the ecology of influential bacteria and harmful algae, suggesting that protection and restoration of native seagrasses and seaweeds in coastal marine environments should be implemented to suppress HABs. Diatom blooms were successfully induced with bottom sediment perturbation to prevent the occurrence of harmful flagellates such as Chattonella spp. and Alexandrium catenella in the Seto Inland Sea; however, this method requires robust and reproducible verification. “Sato-Umi” is a helpful concept for HAB control in the sea and freshwater ecosystems when adequately managed by people (e.g., appropriate bottom perturbation; protection and restoration of seaweeds, seagrasses, and aquatic plants; application of polycultures of fish, seaweeds, etc.).


2018 ◽  
Vol 625 ◽  
pp. 872-884 ◽  
Author(s):  
Shiming Ding ◽  
Musong Chen ◽  
Mengdan Gong ◽  
Xianfang Fan ◽  
Boqiang Qin ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2871
Author(s):  
Vladimír Frišták ◽  
H. Dail Laughinghouse ◽  
Stephen M. Bell

Harmful algal blooms have increased globally with warming of aquatic environments and increased eutrophication. Proliferation of cyanobacteria (blue-green algae) and the subsequent flux of toxic extracellular microcystins present threats to public and ecosystem health and challenges for remediation and management. Although methods exist, there is currently a need for more environmentally friendly and economically and technologically feasible sorbents. Biochar has been proposed in this regard because of its high porosity, chemical stability, and notable sorption efficiency for removing of cyanotoxins. In light of worsening cyanobacterial blooms and recent research advances, this review provides a timely assessment of microcystin removal strategies focusing on the most pertinent chemical and physical sorbent properties responsible for effective removal of various pollutants from wastewater, liquid wastes, and aqueous solutions. The pyrolysis process is then evaluated for the first time as a method for sorbent production for microcystin removal, considering the suitability and sorption efficiencies of pyrolysed materials and biochar. Inefficiencies and high costs of conventional methods can be avoided through the use of pyrolysis. The significant potential of biochar for microcystin removal is determined by feedstock type, pyrolysis conditions, and the physiochemical properties produced. This review informs future research and development of pyrolysed materials for the treatment of microcystin contaminated aquatic environments.


Toxins ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 641 ◽  
Author(s):  
Isaac Yaw Massey ◽  
Pian Wu ◽  
Jia Wei ◽  
Jiayou Luo ◽  
Ping Ding ◽  
...  

Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 90
Author(s):  
Ellis O’Neill

Eukaryotic algae are an extremely diverse category of photosynthetic organisms and some species produce highly potent bioactive compounds poisonous to humans or other animals, most notably observed during harmful algal blooms. These natural products include some of the most poisonous small molecules known and unique cyclic polyethers. However, the diversity and complexity of algal genomes means that sequencing-based research has lagged behind research into more readily sequenced microbes, such as bacteria and fungi. Applying informatics techniques to the algal genomes that are now available reveals new natural product biosynthetic pathways, with different groups of algae containing different types of pathways. There is some evidence for gene clusters and the biosynthetic logic of polyketides enables some prediction of these final products. For other pathways, it is much more challenging to predict the products and there may be many gene clusters that are not identified with the automated tools. These results suggest that there is a great diversity of biosynthetic capacity for natural products encoded in the genomes of algae and suggest areas for future research focus.


Sign in / Sign up

Export Citation Format

Share Document