scholarly journals Desiccation, dormancy, and storage of Pterocarya fraxinifolia (Juglandaceae) seeds: application in Hyrcanian and Colchian forest conservation

2020 ◽  
Vol 50 (1) ◽  
pp. 24-31
Author(s):  
Mikołaj Krzysztof Wawrzyniak ◽  
Anna Katarzyna Jasińska ◽  
Paweł Chmielarz ◽  
Gregor Kozlowski

Pterocarya fraxinifolia (Poir.) Spach (Juglandaceae) is a model relict tree species native to South Caucasus and is a typical element of threatened riparian forests. Intensive land transformations, which are common in Transcaucasia, have resulted in loss of natural habitat and population decline of the species. One of the methods of ex situ conservation is seed banking. Cryopreservation in liquid nitrogen (−196 °C) is of particular interest, as it allows safe preservation of valuable plant genetic resources. However, the feasibility of seed cryopreservation is related to the desiccation tolerance and intrinsic composition of the seeds. In this study, we examined the physiological traits of Pterocarya fraxinifolia seeds, for which desiccation tolerance is unknown or controversial, and their feasibility for cryopreservation. Additionally, we tested stratification methods for dormancy assessment. Results showed that seeds survived desiccation to a moisture content of 2.8% with a germination rate of 64%. Stratification at a temperature of 3 °C for 8 weeks proved to be both fast and effective. Seed moisture content ranging from 2.8% to 18.1% was determined to be safe for cryopreservation. There was no difference in seedling emergence in seeds stored for 1 year regardless of the storage temperature (−3, −18, or −196 °C). Based on our results, Pterocarya fraxinifolia seeds can be classified as orthodox. This study demonstrates for the first time the feasibility of cryopreserving Pterocarya fraxinifolia seeds.

2007 ◽  
Vol 47 (6) ◽  
pp. 683 ◽  
Author(s):  
Pippa J. Michael ◽  
Kathryn J. Steadman ◽  
Julie A. Plummer

Seed development was examined in Malva parviflora. The first flower opened 51 days after germination; flowers were tagged on the day that they opened and monitored for 33 days. Seeds were collected at 12 stages during this period and used to determine moisture content, germination of fresh seeds and desiccation tolerance (seeds dried to 10% moisture content followed by germination testing). Seed moisture content decreased as seeds developed, whereas fresh (max. 296 mg) and dry weight (max. 212 mg) increased to peak at 12–15 and ~21 days after flowering (DAF), respectively. Therefore, physiological maturity occurred at 21 DAF, when seed moisture content was 16–21%. Seeds were capable of germinating early in development, reaching a maximum of 63% at 9 DAF, but germination declined as development continued, presumably due to the imposition of physiological dormancy. Physical dormancy developed at or after physiological maturity, once seed moisture content declined below 20%. Seeds were able to tolerate desiccation from 18 DAF; desiccation hastened development of physical dormancy and improved germination. These results provide important information regarding M. parviflora seed development, which will ultimately improve weed control techniques aimed at preventing seed set and further additions to the seed bank.


2003 ◽  
Vol 60 (3) ◽  
pp. 465-469 ◽  
Author(s):  
Angelica Brod Rodo ◽  
Julio Marcos Filho

International research on vegetable seed vigor is not at the same level attained for grain crops species. This study was conducted to identify reliable procedures for the accelerated aging and controlled deterioration tests to rank onion (Allium cepa L.) seed lots according to their physiological potential. Six seed lots of the cultivars Aurora and Petroline were evaluated in the laboratory for germination, first count, seedling vigor classification, traditional and saturated salt accelerated aging (41ºC / 48 and 72 h), controlled deterioration (24% of water / 45ºC / 24 h) and seedling emergence tests. Seed moisture content after the saturated salt accelerated aging test was lower and uniform, which is considered an important advantage in comparison to the traditional procedure. The saturated salt accelerated aging (41ºC / 48 and 72 h) and controlled deterioration (moisture content adjusted to 24% / 45ºC / 24 h) tests were the best procedures to assess the physiological potential of onion seeds, and are indicated for use in quality control programs.


2020 ◽  
Vol 48 (2) ◽  
pp. 201-207
Author(s):  
Y.K. Fan ◽  
M. Liu ◽  
J.X. Hu ◽  
M.Y. Ji ◽  
Q.Y. Lan

The present study examined the effect of temperature (15, 20, 25, 30 and 20/30°C) on germination and the storage behaviour of freshly harvested mature seeds of Calamus palustris var. cochinchinensis. Seed desiccation tolerance and the effects of storage temperature (4 and 15°C), perlite water content (120, 180 and 240%) and seed moisture content (27.8, 38.2 and 49.2%) on viability were observed. Seeds had a higher germination at 25°C (88.3%) than at the other tested temperatures. Germination decreased as the seed moisture content decreased during desiccation. The germination of seeds stored at 15°C was higher than that of seeds stored at 4°C. Germination of seeds stored at 15 and 4°C was <65% and with extension of storage time, the germination decreased, indicating that neither temperature can be used for long-term conservation. For short-term storage, the seeds can be stored at 15°C with perlite with 180% water content in plastic bottles or at 15°C with 49.2% moisture content sealed inside aluminum foil bags.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 782-785 ◽  
Author(s):  
Wayne A. Mackay

Seeds of Lupinus havardii Wats. and L. texensis Hook. were subjected to scarification, storage temperature (4 or 22 °C), and relative humidity (RH) treatments (11%, 23%, 52%, 75%, or 97% RH) for 12 months. Seed moisture increased as relative humidity increased with scarified seed having the greatest increase in seed moisture content regardless of storage temperature. For both species, the combination of seed scarification before storage, 75% RH, and 22 °C storage temperature resulted in a significant and rapid decline in germinability beginning at 4 months. Scarified L. texensis seed stored at 52% RH and 22 °C also exhibited a significant decline in germinability following 6 months storage. Seed of both species stored under all other conditions germinated similar to or higher than the initial germination rate after 12 months. These results clearly show that scarification can be performed before seed packaging as long as the seed packets are stored at ≤23% RH under 4 or 22 °C with no loss in germinability for at least 1 year.


2016 ◽  
Vol 5 (05) ◽  
pp. 4567 ◽  
Author(s):  
Bhawna Tewari* ◽  
Ashish Tewari

Prunus cerasoides D. Don the Himalayan wild cherry is one lesser known multipurpose tree species of Himalaya. The tree prefers to grow on sloping grounds between the altitudes of 1200-2400 m, on all types of soils and rocks. The tree is used as a medicinal plant in Himalayan region. The fruit is edible and the pulp is used to make a cherry brandy. The species has poor germination and seedling establishment in natural habitat. The over exploitation of seeds of the species coupled with relatively hard seed coat has adversely affects the germination of seeds in their natural habitat. The information about the seed maturity and technique of germination enhancement is scanty. The present study was conducted to assess the exact maturity time and optimum temperature for enhancement of germination in seed of P. cerasoides.  The fruit/seeds were collected from six sites covering the altitudinal range of 1350 – 1810 m during the period (2003-2004). The colour change of fruit from dark green to red was a useful indicator of seed maturity. Maximum germination coincided with 50.24 ± 0.19 % fruit and 30.11 ± 0.57 % seed moisture content. Negative correlation existed between germination and seed moisture content (r = 0.294; P< 0.01). Significantly higher germination occurred when seeds were placed above the paper at 25º C.


2004 ◽  
Vol 10 (4) ◽  
pp. 221 ◽  
Author(s):  
C. A. Offord ◽  
M. L. McKensy ◽  
P. V. Cuneo

This article reviews the germinability and viability of seeds of threatened species collections in the New South Wales (NSW) Seedbank with the manifold aims of: ensuring that existing storage treatments and conditions provide effective ex situ storage of threatened species seed; providing baseline viability and seed storage life data on threatened species; and, identifying research gaps in seed germination and storage protocols for threatened species and communities. The germinability and viability of a range of seed accessions, of various ages and stored under different (although mainly identifiable) conditions in the NSW Seedbank, was determined through germination and cut-tests. The results indicated that many of the Fabaceae, Myrtaceae and Proteaceae species tested are orthodox and can be stored at 5 to 10% moisture content at 5�C for up to ten years without significant loss of viability (short- to medium-term storage). The best results were obtained in the lower seed moisture content range (2 to 9%), which appeared to be especially critical for long-term storage of many Proteaceae accessions, reinforcing the need to attain the correct seed moisture content for long-term storage. Around 10% of accessions exhibited some degree of dormancy even after long storage periods. Storage of the widest range of species, for periods greater than ten years for long-term conservation purposes, is generally best conducted by storing at sub-zero temperatures. Freezing at -18�C had little effect on the germinability of a range of seeds tested and is recommended over storage at 5�C. Collection and seed banking procedures for the NSW Seedbank will be regularly reviewed and procedures modified in order to identify the best long-term storage conditions for species within this and other seedbanks. Seed collection strategies to maximize diversity and uses of seedbanks in conservation are discussed.


1978 ◽  
Vol 58 (2) ◽  
pp. 557-560
Author(s):  
R. M. DE PAUW

The after-ripening requirement of three fall rye (Secale cereale L.) cultivars, harvested at three seed moisture contents (50, 42, and 32%), was assessed by monitoring the changes in seedling emergence from sowings made over a period of 60 days. All cultivars exhibited a short after-ripening requirement of 1–7 days. The absolute duration of the after-ripening requirement was not affected by the range of seed moisture contents studied. Seed treatment with captan [N[(trichloromethyl) thiol]-4-cyclohexene-1,2-dicarboximide] significantly increased percent seedling emergence. The captan treatment had the greatest effect on seeds harvested at the lowest moisture content.


2016 ◽  
Vol 40 (4) ◽  
pp. 380-389 ◽  
Author(s):  
Maísa de Siqueira Pinto ◽  
Renato Paiva ◽  
Diogo Pedrosa Corrêa da Silva ◽  
Paulo Augusto Almeida Santos ◽  
Rodrigo Therezan de Freitas ◽  
...  

ABSTRACT Conservation of plant genetic resources is important to prevent genetic erosion. Seed banks are the most common method of ex situ conservation; however, coffee seeds can not be stored by conventional methods. Cryopreservation is a viable alternative for long-term conservation of species that produce intermediate or recalcitrant seeds, as coffee. The aim of this work was to cryopreserve Coffea arabica L. cv Catuaí Vermelho IAC 144 zygotic embryos, and analyse the effects of dehydration prior cryopreservation and osmotic rehydration after thawing, in embryos germination and seedlings formation after cryopreservation. Prior to cryopreservation, different dehydration times (0, 15, 30, 60 and 120 min) were tested. Dehydrated embryos were cryopreserved in liquid nitrogen for 1 hour, and after thawing were rehydrated by osmotic solutions. Dehydrated and non-cryopreserved embryos were also analysed. The test with 2,3,5 triphenyl tetrazolium chloride (TTC) was used to evaluate the embryos viability. Non-dehydrated embryos did not survive after freezing. Embryos that were dehydrated until 20% of the moisture content did not germinate when osmotic rehydration was not performed. In contrast, cryopreserved embryos with the same moisture content presented 98% germination when they were rehydrated slowly in osmotic solution. According to tetrazolium tests, embryos presented maximum viability (75%) after dehydration for 60 minutes (23% moisture content). Therefore, coffee zygotic embryos (Coffea arabica L. cv. Catuaí Vermelho) can be successfully cryopreserved using physical dehydration in silica gel for 60 minutes (23% moisture content), followed by osmotic rehydration after thawing. This method allowed a germination of 98% of cryopreserved zygotic embryos.


2016 ◽  
Vol 46 (11) ◽  
pp. 1932-1937 ◽  
Author(s):  
Patrícia Pereira de Souza ◽  
Sérgio Yoshimitsu Motoike ◽  
Mychelle Carvalho ◽  
Kacilda Naomi Kuki ◽  
Eduardo Euclydes de Lima e Borges ◽  
...  

ABSTRACT: Macauba palm stands out for having favorable features to biodiesel production such as the high oil content of its fruit. Considering the great potential of the species and their applicability in the renewable energy field, it becomes indispensable to establish the right conditions for storing the seeds for propagation purpose. The aim of this research was to evaluate the effect of seed moisture content, packaging, and storage conditions such as temperature and relative humidity on the quality of seeds from Minas Gerais State, during a 12-month storage period. The research had two independent assays: (I) the seeds were stored with three moisture contents/ranges 4.0≤6.0%; 6.0≤8.0% and 8.0≤10.0% in impermeable packages, under room temperature and at 10ºC; (II) seeds with approximately 5.9% of moisture content were stored in three different types of packages: a) permeable, b) semi-permeable and c) impermeable. Three storing conditions were tested: a) room temperature and RH under laboratory conditions; b) 15ºC and 45% RH; c) 20ºC and 55% RH. Water content, germination rate and germination speed index were evaluated at 0, 4, 8 and 12 months of storing. The best germination results were obtained with the moisture range of 6.0≤8.0%, with seeds kept at room temperature; while the seeds stored at 10ºC, regardless the moisture range, did not survive. The stored seeds with 5.9% moisture content and at both 15ºC/45%RH and 20ºC/55% RH conditions, independently of the package type used, showed the best results. Thus, macaw palm seeds can be classified as intermediates seeds.


Sign in / Sign up

Export Citation Format

Share Document