A wide-angle polarization-sensitive dual-band absorber with a grating structure

2014 ◽  
Vol 92 (3) ◽  
pp. 191-193 ◽  
Author(s):  
Yan-Lin Liao ◽  
Yan Zhao

We report a wide-angle polarization-sensitive dual-band absorber with a grating structure. The unit cell is made of two metal–dielectric–metal structures with different dielectric-layer thicknesses. The simulation results show that the dual-band absorption peaks for TM polarization can be tuned by varying the thickness of the dielectric layer. Also, the dual-band absorption magnitudes are more than 0.9 for both absorption peaks for angles up to 60°. At the same time, TE-polarized light has been reflected effectively in the visible and infrared regimes. Our results may have potential applications in polarization detectors and reflective polarizers.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2193 ◽  
Author(s):  
Taiguo Lu ◽  
Dawei Zhang ◽  
Peizhen Qiu ◽  
Jiqing Lian ◽  
Ming Jing ◽  
...  

We designed an ultra-thin dual-band metamaterial absorber by adjusting the side strips’ length of an H-shaped unit cell in the opposite direction to break the structural symmetry. The dual absorption peaks approximately 99.95% and 99.91% near the central resonance frequency of 4.72 THz and 5.0 THz were obtained, respectively. Meanwhile, a plasmon-induced transmission (PIT) like reflection window appears between the two absorption frequencies. In addition to theoretical explanations qualitatively, a multi-reflection interference theory is also investigated to prove the simulation results quantitatively. This work provides a way to obtain perfect dual-band absorption through an asymmetric metamaterial structure, and it may achieve potential applications in a variety of fields including filters, sensors, and some other functional metamaterial devices.


2014 ◽  
Vol 28 (14) ◽  
pp. 1450109 ◽  
Author(s):  
Yan-Lin Liao ◽  
Yan Zhao

In this paper, a wide-angle polarization-sensitive dual-band absorber at infrared wavelengths with a multilayer grating is reported. The simulation results show that the absorber has two absorption peaks at wavelengths λ = 1.365 μ m and λ = 3.035 μ m with the absorption magnitudes more than 0.97 and 0.99 for TM polarization (electric field perpendicular to the strips), respectively. And this absorber reflects almost all TE polarization (electric field parallel to the strips) light. The dual-band absorption peaks can be tuned by varying the width of the strips, and the absorption magnitudes are more than 0.9 for the dual-band absorption peaks for angles up to 70°.


2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1718
Author(s):  
Qian Kong ◽  
Manna Gu ◽  
Xiangyu Zeng ◽  
Rui Sun ◽  
Yuqin Zhang ◽  
...  

Manipulation of multichannel vector beams (VBs) with metasurfaces is an important topic and holds potential applications in information technology. In this paper, we propose a novel metasurface for the generation of dual VBs, which is composed of orthogonal slit pairs arranged on multiple groups of combined semicircular rings (CSRs). A group of CSRs include a right-shifted set and a left-shifted set of semicircular rings, and each set of semicircular rings has two halves of circles with different radii, sharing the same shifted center. Under the illumination of linearly polarized light, the two shifted sets of semicircular rings generate the two VBs at the shifted center positions on the observation plane. The slit units of each set are designed with independent rotation order and initial orientation angle. By adjusting the linear polarization of illumination, both two VBs with their orders and polarization states are independently controlled simultaneously. The principle and design are demonstrated by the finite-difference time domain (FDTD) simulation. The work is of significance for miniatured devices of VB generators and for related applications.


2021 ◽  
pp. 104747
Author(s):  
Haixia Liu ◽  
Shashi Zhang ◽  
Hao Ding ◽  
Wei Sun ◽  
Lichen Sun

Sign in / Sign up

Export Citation Format

Share Document