scholarly journals Unsteady flow over an expanding cylinder in a nanofluid containing gyrotactic microorganisms

2016 ◽  
Vol 94 (5) ◽  
pp. 466-473 ◽  
Author(s):  
Hui Chen ◽  
Hongxing Liang ◽  
Tianli Xiao ◽  
Heng Du ◽  
Ming Shen

In this paper, an analysis is made for the unsteady flow due to an expanding cylinder in a nanofluid that contains both nanoparticles and gyrotactic microoganisms with suction. The nonlinear system of partial differential equations is transformed into high-order nonlinear ordinary differential equations using similarity transformations, and then solved numerically using a shooting method with fourth-fifth-order Runge–Kutta integration technique. The influences of significant physical parameters on the distributions of the velocity, temperature, nanoparticle volume fraction, as well as the density of motile microorganisms are graphically presented and discussed in detail. It is found that dual solutions exist for both stretching and shrinking cases and the range of dual solutions increases with the strength of the expansion. The results also indicate that larger bioconvection Peclet number and smaller Schmidt number lead to an increased concentration of microorganisms and thicker boundary layer thickness.

2019 ◽  
Vol 15 (4) ◽  
pp. 585-592
Author(s):  
Kamatam Govardhan ◽  
Ganji Narender ◽  
Gobburu Sreedhar Sarma

A numerical analysis was performed for the mathematical model of boundary layer flow of Casson nanofluids. Heat and mass transfer were analyzed for an incompressible electrically conducting fluid with viscous dissipations and chemical reaction past a stretching sheet. An appropriate set of similarity transformations were used to transform the governing partial differential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is solved numerically by using shooting method. A detailed discussion on the effects of various physical parameters and heat transfer characteristics was also included.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sumera Dero ◽  
Hisamuddin Shaikh ◽  
Ghulam Hyder Talpur ◽  
Ilyas Khan ◽  
Sayer O. Alharbim ◽  
...  

AbstractIn this paper, the heat transfer properties in the three-dimensional (3D) magnetized with the Darcy-Forchheimer flow over a shrinking surface of the $$Cu + Al_{2} O_{3} /$$ C u + A l 2 O 3 / water hybrid nanofluid with radiation effect were studied. Valid linear similarity variables convert the partial differential equations (PDEs) into the ordinary differential equations (ODEs). With the help of the shootlib function in the Maple software, the generalized model in the form of ODEs is numerically solved by the shooting method. Shooting method can produce non-unique solutions when correct initial assumptions are suggested. The findings are found to have two solutions, thereby contributing to the introduction of a stability analysis that validates the attainability of first solution. Stability analysis is performed by employing if bvp4c method in MATLAB software. The results show limitless values of dual solutions at many calculated parameters allowing the turning points and essential values to not exist. Results reveal that the presence of dual solutions relies on the values of the porosity, coefficient of inertia, magnetic, and suction parameters for the specific values of the other applied parameters. Moreover, it has been noted that dual solutions exist in the ranges of $$F_{s} \le F_{sc}$$ F s ≤ F sc , $$M \ge M_{C}$$ M ≥ M C ,$$S \ge S_{C} ,$$ S ≥ S C , and $$K_{C} \le K$$ K C ≤ K whereas no solution exists in the ranges of $$F_{s} > F_{sc}$$ F s > F sc , $$M < M_{c}$$ M < M c , $$S < S_{c}$$ S < S c , and $$K_{C} > K$$ K C > K . Further, a reduction in the rate of heat transfer is noticed with a rise in the parameter of the copper solid volume fraction.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 487 ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Jawad Raza ◽  
Ilyas Khan ◽  
El-Sayed M. Sherif

In this article, the magnetohydrodynamic (MHD) flow of Casson nanofluid with thermal radiation over an unsteady shrinking surface is investigated. The equation of momentum is derived from the Navier–Stokes model for non-Newtonian fluid where components of the viscous terms are symmetric. The effect of Stefan blowing with partial slip conditions of velocity, concentration, and temperature on the velocity, concentration, and temperature distributions is also taken into account. The modeled equations of partial differential equations (PDEs) are transformed into the equivalent boundary value problems (BVPs) of ordinary differential equations (ODEs) by employing similarity transformations. These similarity transformations can be obtained by using symmetry analysis. The resultant BVPs are reduced into initial value problems (IVPs) by using the shooting method and then solved by using the fourth-order Runge–Kutta (RK) technique. The numerical results reveal that dual solutions exist in some ranges of different physical parameters such as unsteadiness and suction/injection parameters. The thickness of the velocity boundary layer is enhanced in the second solution by increasing the magnetic and velocity slip factor effect in the boundary layer. Increment in the Prandtl number and Brownian motion parameter is caused by a reduction of the thickness of the thermal boundary layer and temperature. Moreover, stability analysis performed by employing the three-stage Lobatto IIIA formula in the BVP4C solver with the help of MATLAB software reveals that only the first solution is stable and physically realizable.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 207 ◽  
Author(s):  
Bagh Ali ◽  
Xiaojun Yu ◽  
Muhammad Tariq Sadiq ◽  
Ateeq Ur Rehman ◽  
Liaqat Ali

The present study investigated the steady magnetohydrodynamics of the axisymmetric flow of a incompressible, viscous, electricity-conducting nanofluid with convective boundary conditions and thermo-diffusion over a radially stretched surface. The nanoparticles’ volume fraction was passively controlled on the boundary, rather than actively controlled. The governing non-linear partial differential equations were transformed into a system of nonlinear, ordinary differential equations with the aid of similarity transformations which were solved numerically, using the very efficient variational finite element method. The coefficient of skin friction and rate of heat transfer, and an exact solution of fluid flow velocity, were contrasted with the numerical solution gotten by FEM. Excellent agreement between the numerical and exact solutions was observed. The influences of various physical parameters on the velocity, temperature, and solutal and nanoparticle concentration profiles are discussed by the aid of graphs and tables. Additionally, authentication of the convergence of the numerical consequences acquired by the finite element method and the computations was acquired by decreasing the mesh level. This exploration is significant for the higher temperature of nanomaterial privileging technology.


2016 ◽  
Vol 71 (12) ◽  
pp. 1121-1129 ◽  
Author(s):  
S. Nadeem ◽  
Z. Ahmed ◽  
S. Saleem

AbstractA study of nanofluids is carried out that reveals the effect of rotational inertia and other physical parameters on the heat transfer and fluid flow. Temperature-dependent dynamic viscosity makes the microrotation viscosity parameter and the micro inertia density variant as well. The governing nonlinear partial differential equations are converted into a set of nonlinear ordinary differential equations by introducing suitable similarity transformations. These reduced nonlinear differential equations are then solved numerically by Keller-box method. The obtained numerical and graphical result discloses many interesting behaviour of nanofluids. It is seen that the temperature gradient decreases with the increase in viscosity parameter. Also, it is observed that with the fixed values of micropolar parameter and viscosity parameter, the velocity gradient near the wall increases with increasing values of solid particle volume fraction parameter. A suitable comparison of results is also presented in this study.


2019 ◽  
Vol 6 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Sohail Nadeem ◽  
Muhammad Naveed Khan ◽  
Noor Muhammad ◽  
Shafiq Ahmad

Abstract The present investigation concentrates on three dimensional unsteady forced bio-convection flow of a viscous fluid. An incompressible flow of a micropolar nanofluid encloses micro-organisms past an exponentially stretching sheet with magnetic field is analyzed. By employing convenient transformation the partial differential equations are converted into the ordinary differential equations which are non-linear. By using shooting method to solved these equations numerically. The influence of the determining parameters on the velocity, temperature, micro-rotation, nanoparticle volume fraction, microorganism are incorporated. The skin friction, heat transfer rate, and the microorganism rate are analyzed. The results depicts that the value of the wall shear stress and Nusselt number are declined while an enhancement take place in the microorganism number. The slip parameters increases the velocity, thermal energy, and microorganism number consequentially. The present investigation are important in improving achievement of microbial fuel cells.


2019 ◽  
Vol 97 (6) ◽  
pp. 579-587
Author(s):  
Azad Hussain ◽  
Zainia Muneer ◽  
M.Y. Malik ◽  
Saadia Ghafoor

The present study focuses on the non-Newtonian magnetohydrodynamic flow, under the kinetic postulate, of fluids that are initially liquid past a porous plate in the appearance of thermal radiation effects. Resemblance transfigurations are used to metamorphose the governing equations for temperature and velocity into a system of ordinary differential equations. We then solved these differential equations subject to convenient boundary conditions by using the shooting method along with the Runge–Kutta method. Heat transfer and characteristic flow results are acquired for different compositions of physical parameters. These results are extended graphically to demonstrate interesting attributes of the physics of the problem. Nusselt number and skin friction coefficients are also discussed via graphs and tables for different values of dimensionless parameters. Decline occurs in velocity profile due to escalating values of M. Temperature profile depicts growing behavior due to acceleration in the values of λ and M. Nusselt number and skin friction curves represent rising behavior according to their parameters.


Author(s):  
K. Kumaraswamy Naidu ◽  
D. Harish Babu ◽  
S. Harinath Reddy ◽  
P. V. Satya Narayana

Abstract In this study, the impact of thermal radiation and partial slip on magnetohydrodynamic flow of the Jeffrey nanofluid comprising motile gyrotactic microorganisms via vertical stretching surface is analyzed. The governing partial differential equations are reformed to a system of coupled ordinary differential equations by utilizing the similarity transformations. The transformed equations are of order four, which are complex to solve analytically and hence, the coupled system is solved computationally by using the shooting technique along the Runge–Kutta integrated scheme. The ramifications of different thermophysical parameters on the density of gyrotactic microorganisms, Jeffrey nanofluid velocity, nanoparticles concentration, temperature, Sherwood number, and Nusselt number are illustrated graphically. Comparing this study with the results already published favors the validity of this study. It is established that the Nusselt number is boosted on enhancing the thermal radiation parameter, and the reverse trend has been observed on increasing the Richardson number, whereas the gyrotactic microorganisms density is more in case of viscous nanofluid compared to the Jeffrey nanofluid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdullah Dawar ◽  
Zahir Shah ◽  
Hashim M. Alshehri ◽  
Saeed Islam ◽  
Poom Kumam

AbstractThis study presents the magnetized and non-magnetized Casson fluid flow with gyrotactic microorganisms over a stratified stretching cylinder. The mathematical modeling is presented in the form of partial differential equations and then transformed into ordinary differential equations (ODEs) utilizing suitable similarity transformations. The analytical solution of the transformed ODEs is presented with the help of homotopy analysis method (HAM). The convergence analysis of HAM is also presented by mean of figure. The present analysis consists of five phases. In the first four phases, we have compared our work with previously published investigations while phase five is consists of our new results. The influences of dimensionless factors like a magnetic parameter, thermal radiation, curvature parameter, Prandtl number, Brownian motion parameter, Schmidt number, heat generation, chemical reaction parameter, thermophoresis parameter, Eckert number, and concentration difference parameter on physical quantities of interests and flow profiles are shown through tables and figures. It has been established that with the increasing Casson parameter (i.e. $$\beta \to \infty$$ β → ∞ ), the streamlines become denser which results the increasing behavior in the fluid velocity while on the other hand, the fluid velocity reduces for the existence of Casson parameter (i.e. $$\beta = 1.0$$ β = 1.0 ). Also, the streamlines of stagnation point Casson fluid flow are highly wider for the case of magnetized fluid as equated to non-magnetized fluid. The higher values of bioconvection Lewis number, Peclet number, and microorganisms’ concentration difference parameter reduces the motile density function of microorganisms while an opposite behavior is depicted against density number.


Author(s):  
M Ferdows ◽  
Hossam A Nabwey ◽  
AM Rashad ◽  
MJ Uddin ◽  
Faris Alzahrani

This research paper addresses the two-dimensional steady laminar incompressible free convective flow of a nanofluid past a horizontal plate saturated in the porous medium, where both the thermal and the mass convective boundary conditions are taken into consideration. Mathematical modeling via similarity transformations (which was developed using one-parameter continuous group of transformation) was applied to obtain a reduced mathematical model, which describes the problem. The solutions of the reduced system were obtained by a numerical method called the fourth- and fifth-order Runge–Kutta–Fehlberg method with the aid of computational software called Maple version 13. The resulting distributions of dimensionless temperature, velocity, and nanoparticle volume fraction are studied graphically to demonstrate the effect of pertinent parameters. Moreover, some of the new findings are shown in graphs. An excellent agreement was found after comparing the results with the previous literature, which assures the validity of the analysis. It is found that the flow is accelerated with an increase in thermal and mass convective parameters. Temperature and concentration are enhanced for rising values of (thermal and concentration) conjugate parameters.


Sign in / Sign up

Export Citation Format

Share Document