scholarly journals Consequences of three modified forms of holographic dark energy models in bulk–brane interaction

2018 ◽  
Vol 96 (1) ◽  
pp. 112-125 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay ◽  
Ratbay Myrzakulov

In this paper, we study the effects that are produced by the interaction between a brane Universe and the bulk in which the Universe is embedded. Taking into account the effects produced by the interaction between a brane Universe and the bulk, we derived the equation of state parameter ωD for three different models of dark energy (DE): holographic DE model with infrared cutoff given by the Granda–Oliveros cutoff, the modified holographic Ricci DE model, and a DE model that is a function of the Hubble parameter H squared and to higher derivatives of H. Moreover, we have considered two different cases of scale factor (namely, the power law and the emergent ones). A nontrivial contribution of the DE is observed to be different from the standard matter fields confined to the brane. Such contribution has a monotonically decreasing behavior upon the evolution of the Universe for the emergent scenario of the scale factor, while monotonically increasing for the power-law form of the scale factor a(t).

2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950149 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay ◽  
Aroonkumar Beesham

In this paper, we study some relevant cosmological features of a Dark Energy (DE) model with Granda–Oliveros cut-off, which is just a specific case of Nojiri–Odintsov holographic DE [S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 38 (2006) 1285] unifying phantom inflation with late-time acceleration, in the framework of Chameleon Brans–Dicke (BD) cosmology. Choosing a particular ansatz for some of the quantities involved, we derive the expressions of some important cosmological quantities, like the Equation of State (EoS) parameter of DE [Formula: see text], the effective EoS parameter [Formula: see text], the pressure of DE [Formula: see text] and the deceleration parameter [Formula: see text]. Moreover, we study the behavior of statefinder parameters [Formula: see text] and [Formula: see text], of the cosmographic parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] and of the squared speed of the sound [Formula: see text] for both case corresponding to noninteracting and interacting Dark sectors. We also plot the quantities we have derived and we calculate their values for [Formula: see text] (i.e. for the beginning of the universe history), for [Formula: see text] (i.e. for far future) and for the present time, indicated with [Formula: see text]. The EoS parameters have been tested against various observational values available in the literature.


2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1174
Author(s):  
Muhammad Umair Shahzad ◽  
Ayesha Iqbal ◽  
Abdul Jawad

In this paper, we consider the flat FRW spacetime filled with interacting dark energy and dark matter in fractal universe. We work with the three models of dark energy named as Tsallis, Renyi and Sharma–Mittal. We investigate different cosmological implications such as equation of state parameter, squared speed of sound, deceleration parameter, statefinder parameters, ω e f f - ω e f f ´ (where prime indicates the derivative with respect to ln a , and a is cosmic scale factor) plane and Om diagnostic. We explore these parameters graphically to study the evolving universe. We compare the consistency of dark energy models with the accelerating universe observational data. All three models are stable in fractal universe and support accelerated expansion of the universe.


2016 ◽  
Vol 71 (10) ◽  
pp. 949-960
Author(s):  
Surajit Chattopadhyay ◽  
Antonio Pasqua ◽  
Irina Radinschi

AbstractThe present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking $H\, = \,{H_0}\, + \,{{{H_1}} \over t}$, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Abdul Jawad ◽  
Ujjal Debnath

This paper is devoted to study the scalar field dark energy models by taking its different aspects in the framework off(R,∇R)gravity. We consider flat FRW universe to construct the equation of state parameter governed byf(R,∇R)gravity. The stability of the model is discussed with the help of squared speed of sound parameter. It is found that models show quintessence behavior of the universe in stable as well as unstable modes. We also develop the correspondence off(R,∇R)model with some scalar field dark energy models like quintessence, tachyonic field,k-essence, dilaton, hessence, and DBI-essence. The nature of scalar fields and corresponding scalar potentials is being analyzed inf(R,∇R)gravity graphically which show consistency with the present day observations about accelerated phenomenon.


Author(s):  
Wajiha Javed ◽  
Iqra Nawazish ◽  
Fatima Shahid ◽  
Nimra Irshad

Abstract This paper is devoted to explore the cosmic evolution of non-flat Friedmann Robertson Walker universe through generalized ghost pilgrim dark energy model in the background of f(R) gravity. For this purpose, we consider two well known scale factors, i.e., power-law and unified scale factors in terms of red shift parameter. For these scale factors, we reconstruct the given dark energy model in f(R) gravity and determine its stability/instability through squared speed of sound parameter. In order to discuss the behavior of reconstructed and dark energy models, we evaluate well known cosmological parameter such as equation of state parameter along with $$\omega $$ω–$$\omega '$$ω′ plane. In addition to this, we also investigate compatibility of new models with standard cosmological models through state-finder parameters. The density parameter is formulated for both ordinary matter as well as dark energy components and results are compared with Planck 2018 constraints. It is concluded that cosmological parameters reveal consistency with recent observations while the value of density parameter suggested by Planck 2018 is achieved by power-law scale factor in most of the cases as compared to unified scale factor.


2018 ◽  
Vol 33 (19) ◽  
pp. 1850106 ◽  
Author(s):  
Promila Biswas ◽  
Ritabrata Biswas

We analyze the universe as a thermodynamic system, homogeneously filled up by exotic matters popularly named as dark energies. Different dark energy models are chosen. We start with the equation of continuity and derive the time and scale factor relations for different EoSs of different dark energy models. To do the time-scale factor relation analysis, nature of dependences on different dark energy modeling parameters have been studied. For this, the help of different plots are used. In general, different dark energies show different properties while occurrences of future singularities are considered. Those properties can be supported by the graphical analysis of their cosmic time-scale factor studies.


Author(s):  
Rahul Ghosh ◽  
Ujjal Debnath ◽  
Shuvendu Chakraborty

Modified gravity models are popular among cosmologists, as they can describe the cosmological evolution quite efficiently. Reconstruction of newly introduced [Formula: see text] gravity, with the help of ordinary, power-law entropy corrected and logarithmic entropy-corrected versions of Holographic dark energy (HDE) and Pilgrim dark energy (PDE) models have been studied in this work. For such reconstruction, we have considered the power-law scale factor [Formula: see text]. Further, the classical stabilities (the squared speed of sound method) of such reconstructions and their implications on the nature of the equation of state (EoS) parameters and deceleration parameter with respect to red-shift have also been examined. Finally, we have computed the age of the universe for reconstructed models.


Sign in / Sign up

Export Citation Format

Share Document