Reconstructions of f(P) gravity from (m,n) type ordinary and entropy-corrected holographic and Pilgrim dark energy models

Author(s):  
Rahul Ghosh ◽  
Ujjal Debnath ◽  
Shuvendu Chakraborty

Modified gravity models are popular among cosmologists, as they can describe the cosmological evolution quite efficiently. Reconstruction of newly introduced [Formula: see text] gravity, with the help of ordinary, power-law entropy corrected and logarithmic entropy-corrected versions of Holographic dark energy (HDE) and Pilgrim dark energy (PDE) models have been studied in this work. For such reconstruction, we have considered the power-law scale factor [Formula: see text]. Further, the classical stabilities (the squared speed of sound method) of such reconstructions and their implications on the nature of the equation of state (EoS) parameters and deceleration parameter with respect to red-shift have also been examined. Finally, we have computed the age of the universe for reconstructed models.

2013 ◽  
Vol 91 (2) ◽  
pp. 134-139
Author(s):  
M.R. Setare ◽  
B. Malakolkalami ◽  
N. Mohammadipour

The ordinary and entropy-corrected versions of the holographic dark energy models in the spatially flat Friedmann–Robertson–Walker universe are considered. Then the F(G) modified gravity models as a candidates of dark energy are reconstructed according to the ordinary and entropy-corrected versions of the holographic dark energy models. The EoS parameters corresponding to the F(G) gravity models are obtained. The validity phantom or quintessence models in this framework of the modified gravity are investigated.


2007 ◽  
Vol 22 (01) ◽  
pp. 41-53 ◽  
Author(s):  
ZE-LONG YI ◽  
TONG-JIE ZHANG

Using the absolute ages of passively evolving galaxies observed at different redshifts, one can obtain the differential ages, the derivative of redshift z with respect to the cosmic time t (i.e. dz/dt). Thus, the Hubble parameter H(z) can be measured through the relation H(z) = -(dz/dt)/(1+z). By comparing the measured Hubble parameter at different redshifts with the theoretical one containing free cosmological parameters, one can constrain current cosmological models. In this paper, we use this method to present the constraint on a spatially flat Friedman–Robert–Walker universe with a matter component and a holographic dark energy component, in which the parameter c plays a significant role in this dark energy model. Firstly we consider three fixed values of c = 0.6, 1.0 and 1.4 in the fitting of data. If we set c free, the best fitting values are c = 0.26, Ωm0 = 0.16, h = 0.9998. It is shown that the holographic dark energy behaves like a quintom-type at the 1σ level. This result is consistent with some other independent cosmological constrains, which imply that c < 1.0 is favored. We also test the results derived from the differential ages using another independent method based on the lookback time to galaxy clusters and the age of the universe. It shows that our results are reliable.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950086 ◽  
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi ◽  
H. Moradpour

Using the non-extensive Tsallis entropy and the holographic hypothesis, we propose a new dark energy (DE) model with timescale as infrared (IR) cutoff. Considering the age of the Universe as well as the conformal time as IR cutoffs, we investigate the cosmological consequences of the proposed DE models and study the evolution of the Universe filled by a pressureless matter and the obtained DE candidates. We find that although this model can describe the late time acceleration and the density, deceleration and the equation of state parameters show satisfactory behavior by themselves, these models are classically unstable unless the interaction between the two dark sectors of the Universe is taken into account. In addition, the results of the existence of a mutual interaction between the cosmos sectors are also addressed. We find out that the interacting models are stable at the classical level which is in contrast to the original interacting agegraphic dark energy models which are classically unstable [K. Y. Kim, H. W. Lee and Y. S. Myung, Phys. Lett. B 660, 118 (2008)].


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


2009 ◽  
Vol 24 (22) ◽  
pp. 1785-1792 ◽  
Author(s):  
B. NAYAK ◽  
L. P. SINGH

The present-day accelerated expansion of the universe is naturally addressed within the Brans–Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff and power law temporal behavior of scale factor. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.


2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.


Author(s):  
H. Moradpour ◽  
A. H. Ziaie ◽  
M. Kord Zangeneh

Abstract Using Tsallis statistics and its relation with Boltzmann entropy, the Tsallis entropy content of black holes is achieved, a result in full agreement with a recent study (Mejrhit and Ennadifi in Phys Lett B 794:24, 2019). In addition, employing Kaniadakis statistics and its relation with that of Tsallis, the Kaniadakis entropy of black holes is obtained. The Sharma-Mittal and Rényi entropy contents of black holes are also addressed by employing their relations with Tsallis entropy. Thereinafter, relying on the holographic dark energy hypothesis and the obtained entropies, two new holographic dark energy models are introduced and their implications on the dynamics of a flat FRW universe are studied when there is also a pressureless fluid in background. In our setup, the apparent horizon is considered as the IR cutoff, and there is not any mutual interaction between the cosmic fluids. The results indicate that the obtained cosmological models have (i) notable powers to describe the cosmic evolution from the matter-dominated era to the current accelerating universe, and (ii) suitable predictions for the universe age.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250046 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

In this paper, we investigate the statefinder, the deceleration and equation of state parameters when universe is composed of generalized holographic dark energy or generalized Ricci dark energy for Bianchi I universe model. These parameters are found for both interacting as well as noninteracting scenarios of generalized holographic or generalized Ricci dark energy with dark matter and generalized Chaplygin gas. We explore these parameters graphically for different situations. It is concluded that these models represent accelerated expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document