Air molecule collision cross sections: calculation and validation

2017 ◽  
Vol 95 (4) ◽  
pp. 346-352
Author(s):  
Djilali Benyoucef ◽  
Toufik Tahri

This work is a contribution to the calculation of the basic data used in the direct simulation Monte Carlo in dry air (80% N2 and 20% O2). The basic data of this modeling are the collision cross sections, which are calculated by using a semi-classical model based on the intermolecular interaction potentials of N2/N2, O2/O2, and N2/O2. To validate this data, we show a comparison between the measured dynamic viscosities reported in the literature for different temperatures and those calculated. Another comparison is performed between the calculation of the smooth cylinder drag coefficients and the measurements, which also have been presented in the literature. These two comparisons showed an excellent quantitative and qualitative agreement and therefore they confirm the calculated data validity.

2012 ◽  
Vol 24 (4) ◽  
pp. 042002 ◽  
Author(s):  
Ingrid Wysong ◽  
Sergey Gimelshein ◽  
Natalia Gimelshein ◽  
William McKeon ◽  
Fabrizio Esposito

Author(s):  
Sauro Succi

This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Nadim A. Diab ◽  
Issam A. Lakkis

This paper presents direct simulation Monte Carlo (DSMC) numerical investigation of the dynamic behavior of a gas film in a microbeam. The microbeam undergoes large amplitude harmonic motion between its equilibrium position and the fixed substrate underneath. Unlike previous work in literature, the beam undergoes large displacements throughout the film gap thickness and the behavior of the gas film along with its impact on the moving microstructure (force exerted by gas on the beam's front and back faces) is discussed. Since the gas film thickness is of the order of few microns (i.e., 0.01 < Kn < 1), the rarefied gas exists in the noncontinuum regime and, as such, the DSMC method is used to simulate the fluid behavior. The impact of the squeeze film on the beam is investigated over a range of frequencies and velocity amplitudes, corresponding to ranges of dimensionless flow parameters such as the Reynolds, Strouhal, and Mach numbers on the gas film behavior. Moreover, the behavior of compressibility pressure waves as a function of these dimensionless groups is discussed for different simulation case studies.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2020 ◽  
Vol 11 (1) ◽  
pp. 351
Author(s):  
Ananda Subramani Kannan ◽  
Tejas Sharma Bangalore Narahari ◽  
Yashas Bharadhwaj ◽  
Andreas Mark ◽  
Gaetano Sardina ◽  
...  

The Knudsen paradox—the non-monotonous variation of mass-flow rate with the Knudsen number—is a unique and well-established signature of micro-channel rarefied flows. A particle which is not of insignificant size in relation to the duct geometry can significantly alter the flow behavior when introduced in such a system. In this work, we investigate the effects of a stationary particle on a micro-channel Poiseuille flow, from continuum to free-molecular conditions, using the direct simulation Monte-Carlo (DSMC) method. We establish a hydrodynamic basis for such an investigation by evaluating the flow around the particle and study the blockage effect on the Knudsen paradox. Our results show that with the presence of a particle this paradoxical behavior is altered. The effect is more significant as the particle becomes large and results from a shift towards relatively more ballistic molecular motion at shorter geometrical distances. The need to account for combinations of local and non-local transport effects in modeling reactive gas–solid flows in confined geometries at the nano-scale and in nanofabrication of model pore systems is discussed in relation to these results.


1998 ◽  
Vol 120 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Masato Ikegawa ◽  
Jun’ichi Kobayashi ◽  
Morihisa Maruko

As integrated circuits are advancing toward smaller device features, step-coverage in submicron trenches and holes in thin film deposition are becoming of concern. Deposition consists of gas flow in the vapor phase and film growth in the solid phase. A deposition profile simulator using the direct simulation Monte Carlo method has been developed to investigate deposition profile characteristics on small trenches which have nearly the same dimension as the mean free path of molecules. This simulator can be applied to several deposition processes such as sputter deposition, and atmospheric- or low-pressure chemical vapor deposition. In the case of low-pressure processes such as sputter deposition, upstream boundary conditions of the trenches can be calculated by means of rarefied gas flow analysis in the reactor. The effects of upstream boundary conditions, molecular collisions, sticking coefficients, and surface migration on deposition profiles in the trenches were clarified.


Sign in / Sign up

Export Citation Format

Share Document