Study on the 4-ethoxy-2-methyl-5-(4-morpholinyl)-3(2H)-pyridazinone using FT-IR, 1H and 13C NMR, UV-vis spectroscopy, and DFT/HSEH1PBE method

2018 ◽  
Vol 96 (9) ◽  
pp. 1042-1052 ◽  
Author(s):  
Bülent Dede ◽  
Davut Avcı ◽  
Semiha Bahçeli

In this work, the 4-ethoxy-2-methyl-5-(4-morpholinyl)-3(2H)-pyridazinone (or emarfazone, C11H17N3O3) compound, which has many biological functions, has been investigated using FT-IR, 1H and 13C NMR (in CDCl3 solvent), and UV-vis (in ethanol solvent) spectroscopic techniques. Furthermore, the optimized molecular structure, conformational analysis, vibrational frequencies and their assignments, 1H and 13C NMR chemical shift values (in gas phase and CHCl3 solvent), HOMO–LUMO, MEP (molecular electrostatic potential), NBO (natural bond orbital) analyses, and nonlinear optical (NLO) parameters of the title compound in the ground state have been explored by using DFT/HSEH1PBE method with the 6-311++G(d,p) basis set. The electronic absorption maximum wavelengths and oscillator strengths (in gas phase and ethanol solvent) were also obtained at TD-DFT/HSEH1PBE level. A comparison among the experimental and calculated results at the mentioned level indicates that the vibrational frequencies and maximum electronic absorption wavelengths are in good agreement with each other.

2015 ◽  
Vol 93 (10) ◽  
pp. 1147-1156 ◽  
Author(s):  
D. Avcı ◽  
S. Bahçeli ◽  
Ö. Tamer ◽  
Y. Atalay

The optimized molecular structures, conformational analyses, vibrational (IR) frequencies and their assignments, maximum electronic absorption wavelengths (gas phase and in ethanol solvent), 1H and 13C NMR chemical shift values (gas phase and in CDCl3 solvent), HOMO−LUMO analysis, molecular electrostatic potential surfaces, and nonlinear optical properties of flufenpyr (C14H9ClF4N2O4) and amipizone (C14H16ClN3O) compounds that have many biological activities have been calculated using the DFT/B3LYP, B3PW91, and HSEH1PBE methods with the 6-311G(d,p) basis set in the ground state. A comparison among the results calculated at the mentioned levels indicates that the HSEH1PBE calculations give usually greater values compared with the others in terms of vibrational frequencies, the maximum electronic absorption wavelengths, and HOMO−LUMO energy gaps of the title compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Friday E. Ani ◽  
Collins U. Ibeji ◽  
Nnamdi L. Obasi ◽  
Monsuru T. Kelani ◽  
Kingsley Ukogu ◽  
...  

AbstractTwo Schiff bases, (E)-1-(4-methoxyphenyl)-N-((E)-3-(4-nitrophenyl)allylidene)methanamine (compound 1) and (E)-N-((E)-3-(4-nitrophenyl)allylidene)-2-phenylethanamine (compound 2) have been synthesized and characterized using spectroscopic methods; time of flight MS, 1H and 13C NMR, FT-IR, UV–VIS, photoluminescence and crystallographic methods. The structural and electronic properties of compounds 1 and 2 in the ground state were also examined using the DFT/B3LYP functional and 6-31 + G(d,p) basis set, while the electronic transitions for excited state calculations were carried out using the TD-DFT/6-31 + G(d,p) method. The Schiff base compounds, 1 and 2 crystallized in a monoclinic crystal system and the P21/c space group. The emission spectra of the compounds are attributed to conjugated π-bond interaction while the influence of the intra-ligand charge transfer resulted in a broad shoulder for 1 and a double emission peak for 2. The calculated transitions at 450 and 369 nm for 1 and 2 respectively are in reasonable agreement with the experimental results. The higher values of dipole moment, linear polarizability and first hyperpolarizability of 1, suggest a better optical property and better candidate for the development of nonlinear optical (NLO) materials.


2019 ◽  
Vol 23 (07n08) ◽  
pp. 943-959
Author(s):  
Nilgün Kabay ◽  
Burak Doğan Bozer ◽  
Aslı Öztürk Kiraz ◽  
Yasemin Baygu ◽  
İzzet Kara ◽  
...  

New zinc(II) phthalocyanines (ZnPc-I and ZnPc-II) containing four peripheral anthracene pendant groups were synthesized by cyclotetramerization of (E)-4-(3-(4-((anthracen-9-yl-methylene)amino)phenoxy)propoxy)phthalonitrile and 4-(3-(4-((anthracen-9-ylmethyl)amino)phenoxy)propoxy)phthalonitrile. All compounds were characterized using a combination of analytical and spectroscopic techniques such 1H, [Formula: see text]C NMR, FT-IR, UV-vis and MS spectral data. The molecular geometry and gauge including atomic orbital (GIAO) 1H and [Formula: see text]C chemical shift values of the compounds in the ground state have also been calculated using B3LYP with the 6–31G([Formula: see text] basis set. The chemical shift of the optimized molecular structure is compared with the experimental chemical shift values.


2019 ◽  
Vol 41 (6) ◽  
pp. 1107-1107
Author(s):  
Mohammed Taha Yaseen and Abdullah Hussein Kshash Mohammed Taha Yaseen and Abdullah Hussein Kshash

The paper presents six homologues series of Schiff bases ether compounds distinguished by the length of terminal alkoxy groups which substituted on a side benzene nucleus. The above structures were demonstrated through the use of spectroscopic techniques, like FT- IR and 1H-NMR. Polarized hot stage optical microscopy was used to study both mesomorphic properties and phase transitions. The results showed that out of the six compounds only three (B2, B3 and B4) were pure (marble) nematic mesophase, while no liquid crystal properties for (B5, B6 and B7) compounds. The theoretical study for the electronic structures was intended to study the effects of alkyl chain length on the electronic structure by using Gaussian program, DFT and 6-31G as basis set. The theoretical results indicate that there is no effect to the terminal substituted alkoxy groups on the HOMO energies but there is an effect on LUMO energies through decreasing energy for the prepared compounds.


2021 ◽  
Author(s):  
D. Nicksonsebastin ◽  
P. Pounraj ◽  
Prasath M

Abstract Perylene based novel organic sensitizers for the Dye sensitized solar cell applications are investigated by using Density functional theory (DFT) and time dependant density functional theory (TD-DFT).The designed sensitizers have perylene and dimethylamine (DM) and N-N-dimethylaniline(DMA) functionalized perylene for the dssc applications.π-spacers are thiophene andcyanovinyl groups and cyanoacrylic acid is chosen as the acceptor for the designed sensitizers. The studied sensitizers were fully optimized by density functional theory at B3LYP/6-311G basis set on gas phase and DMF phase. The electronic absorption of the sensitizers is analyzed by TD-DFT at B3LYP/6-311G basis set in both gas and DMF phase.


Author(s):  
Anastasia Filtschew ◽  
Pablo Beato ◽  
Søren Birk Rasmussen ◽  
Christian Hess

The role of platinum on the room temperature NOx storage mechanism and the NOx desorption behavior of ceria was investigated by combining online FT-IR gas-phase analysis with in situ Raman...


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2020 ◽  
Vol 24 (08) ◽  
pp. 1047-1053
Author(s):  
Emre Güzel ◽  
Barış Seçkin Arslan ◽  
Kübra Çıkrıkçı ◽  
Adem Ergün ◽  
Nahit Gençer ◽  
...  

The preparation and assessment of carbonic anhydrase and paraoxonase enzyme inhibition properties of 3-(2-(5-amino-4-(4-bromophenyl)-3-methyl-1H-pyrazol-1-yl)ethoxy)phthalonitrile (2) and its nitrogen-containing non-peripheral phthalocyanine derivatives (3 and 4) are reported for the first time. The new phthalonitrile and its phthalocyanine derivatives have been elucidated by FT-IR spectroscopy, 1H-NMR, [Formula: see text]C-NMR, mass and UV-vis spectroscopy. The results demonstrated that all synthesized compounds moderately inhibited carbonic anhydrase and paraoxonase enzymes. Among the compounds, the most active ones were found to be compound 4 for PON (Ki : 0.14 [Formula: see text]M), compound 3 for hCA I (Ki : 22.52 [Formula: see text]M) and compound 1 for hCA II (Ki : 13.62 [Formula: see text]M).


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Amer A. G. Al Abdel Hamid ◽  
Mohammad Al-Khateeb ◽  
Ziyad A. Tahat ◽  
Mahmoud Qudah ◽  
Safwan M. Obeidat ◽  
...  

A new ruthenium(II) complex (cis-ruthenium-bis[2,2′-bipyridine]-bis[4-aminothiophenol]-bis[hexafluorophosphate]) has been synthesized and characterized using standard analytical and spectroscopic techniques, FTIR, 1H and 13C-NMR, UV/vis, elemental analysis, conductivity measurements, and potentiometric titration. Investigation of the synthesized complex with metal ions showed that this complex has photochemical properties that are selective and sensitive toward the presence of mercuric ion in aqueous solution. The detection limit for mercuric ions using UV/vis spectroscopy was estimated to be ~ 0.4 ppm. The results presented herein may have an important implication in the development of a spectroscopic selective detection for mercuric ions in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document