scholarly journals Sign-changeable interacting agegraphic dark energy in Brans–Dicke cosmology

2020 ◽  
Vol 98 (7) ◽  
pp. 643-649
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi

We explore a spatially homogeneous and isotropic Friedmann–Robertson–Walker (FRW) universe that is filled with agegraphic dark energy (ADE) with mutual interaction with pressureless dark matter in the background of Brans–Dicke (BD) theory. We consider both original and a new type of ADE (NADE) and further assume that the sign of the interaction term can change during the history of the universe. We obtain the equation of the state parameter, the deceleration parameter, and the evolutionary equation for the sign-changeable interacting ADE and NADE in BD cosmology. We find that in both models, the equation of the state parameter, wD, cannot cross the phantom line, although they can predict the universe evolution from the early deceleration phase to the late time acceleration, compatible with observations. We also investigate the sound stability of these models and find out that both models cannot show a signal of stability for different model parameters.

Open Physics ◽  
2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Esmaeil Ebrahimi ◽  
Ahmad Sheykhi ◽  
Hamzeh Alavirad

AbstractWe investigate the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity. First, we study the non-interacting generalized ghost dark energy in a flat Friedmann-Robertson-Walker (FRW) background. We obtain the equation of state parameter, w D = p/ρ, the deceleration parameter, and the evolution equation of the generalized ghost dark energy. We find that, in this case, w D cannot cross the phantom line (w D > −1) and eventually the universe approaches a de-Sitter phase of expansion (w D → −1). Then, we extend the study to the interacting ghost dark energy in both a flat and non-flat FRW universe. We find that the equation of state parameter of the interacting generalized ghost dark energy can cross the phantom line (w D < −1) provided the parameters of the model are chosen suitably. Finally, we constrain the model parameters by using the Markov Chain Monte Carlo (MCMC) method and a combined dataset of SNIa, CMB, BAO and X-ray gas mass fraction.


2020 ◽  
Vol 35 (38) ◽  
pp. 2050318
Author(s):  
Umesh Kumar Sharma ◽  
Shikha Srivastava

In this work, we have considered the recently proposed new Tsallis agegraphic dark energy (NTADE) model [Mod. Phys. Lett. A 34, 1950086 (2019)] within the framework of a flat Friedmann–Robertson–Walker (FRW) Universe by taking various values of the parameter [Formula: see text]. The NTADE model shows the current phase transition of the Universe from decelerated to accelerated phase. The NTADE equation of state (EoS) parameter shows a rich behavior as it can be quintessence-like or phantom-like depending on the value of [Formula: see text]. For discriminating the NTADE model from [Formula: see text]CDM, we have plotted the statefinder parameters [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] pair. The NTADE model shows distinct evolutionary trajectories of their evolution in ([Formula: see text]) and ([Formula: see text]) plane. An analysis using the snap parameter and the [Formula: see text] pair dynamical analysis have also been performed.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950086 ◽  
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi ◽  
H. Moradpour

Using the non-extensive Tsallis entropy and the holographic hypothesis, we propose a new dark energy (DE) model with timescale as infrared (IR) cutoff. Considering the age of the Universe as well as the conformal time as IR cutoffs, we investigate the cosmological consequences of the proposed DE models and study the evolution of the Universe filled by a pressureless matter and the obtained DE candidates. We find that although this model can describe the late time acceleration and the density, deceleration and the equation of state parameters show satisfactory behavior by themselves, these models are classically unstable unless the interaction between the two dark sectors of the Universe is taken into account. In addition, the results of the existence of a mutual interaction between the cosmos sectors are also addressed. We find out that the interacting models are stable at the classical level which is in contrast to the original interacting agegraphic dark energy models which are classically unstable [K. Y. Kim, H. W. Lee and Y. S. Myung, Phys. Lett. B 660, 118 (2008)].


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Surajit Chattopadhyay

In the present work, we have studied some features of the generalized Brans-Dicke (BD) model in which the scalar field is allowed to couple nonminimally with the matter sector. Extended holographic Ricci dark energy (EHRDE) has been considered in the above framework of BD cosmology. Some restrictions have been derived for the BD parameter ω, and a stronger matter-chameleon coupling has been observed with the expansion of the universe. In this framework, the equation of the state parameter of EHRDE has behaved like quintom. Also, we have reconstructed the potential and coupling function for BD model for the EHRDE. It has been observed that the potential function is increasing as the matter-chameleon coupling is getting stronger.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi

We investigate the ghost model of dark energy in the framework of DGP braneworld. We explore the cosmological consequences of this model by determining the equation of state parameter, ωD, the deceleration, and the density parameters. We also examine the stability of this model by studying the squared of the sound speed in the presence/absence of interaction term between dark energy and dark matter. We find out that in the absence of interaction between two dark sectors of the universe we have ωD→-1 in the late time, while in the presence of interaction ωD can cross the phantom line -1. In both cases the squared of sound speed vs2 does not show any signal of stability. We also determine the statefinder diagnosis of this model as well as the ωD-ωD′ plane and compare the results with the ΛCDM model. We find that ωD-ωD′ plane meets the freezing region in the absence of interaction between two dark sectors, while it meets both the thawing and the freezing regions in the interacting case.


2019 ◽  
Vol 97 (11) ◽  
pp. 1185-1186 ◽  
Author(s):  
E.C. Gunay Demirel

In this study, we report the state parameter of dark energy in higher dimensional Friedmann–Robertson–Walker (FRW) space–time according to generalized entropy of Sharma and Mittal. In this case we analyze the state parameter of dark energy according to today’s observational evidence.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Abdul Jawad ◽  
Ujjal Debnath

This paper is devoted to study the scalar field dark energy models by taking its different aspects in the framework off(R,∇R)gravity. We consider flat FRW universe to construct the equation of state parameter governed byf(R,∇R)gravity. The stability of the model is discussed with the help of squared speed of sound parameter. It is found that models show quintessence behavior of the universe in stable as well as unstable modes. We also develop the correspondence off(R,∇R)model with some scalar field dark energy models like quintessence, tachyonic field,k-essence, dilaton, hessence, and DBI-essence. The nature of scalar fields and corresponding scalar potentials is being analyzed inf(R,∇R)gravity graphically which show consistency with the present day observations about accelerated phenomenon.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050066
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay

Motivated by the work of Nojiri et al. [S. Nojiri, S. D. Odintsov and E. N. Saridakis, Holographic inflation, Phys. Lett. B 797 (2019) 134829], this study reports a model of inflation under the consideration that the inflationary regime is originated by a type of holographic energy density. The infrared cutoff has been selected based on the modified holographic model that is a particular case of Nojiri–Odintsov holographic dark energy [S. Nojiri and S. D. Odintsov, Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy, Gen. Relativ. Gravit. 38 (2006) 1285] that unifies phantom inflation with the acceleration of the universe on late time. On getting an analytical solution for Hubble parameter we considered the presence of bulk viscosity and the effective equation of state parameter appeared to be consistent with inflationary scenario with some constraints. It has also being observed that in the inflationary scenario the contribution of bulk viscosity is not of much significance and its influence is increasing with the evolution of the universe. Inflationary observables have been computed for the model and the slow-roll parameters have been computed. Finally, it has been observed that the trajectories in [Formula: see text] are compatible with the observational bound found by Planck. It has been concluded that the tensor to scalar ratio for this model can explain the primordial fluctuation in the early universe as well.


2020 ◽  
Vol 17 (01) ◽  
pp. 2050008 ◽  
Author(s):  
Maryam Aghaei Abchouyeh ◽  
Behrouz Mirza ◽  
Parisa Shahidi ◽  
Fatemeh Oboudiat

Dynamical behavior and future singularities of [Formula: see text] gravitational theory are investigated. This gravitational model is a more complete form of the [Formula: see text] gravity which can offer new dynamics for the universe. We investigate this gravitational theory for the case [Formula: see text] using the method of autonomous dynamical systems and by assuming an interaction between matter and dark energy. The fixed points are identified and the results are consistent with standard cosmology and show that for small [Formula: see text], the radiation-dominated era is an unstable fixed point of the theory and the universe will continue its procedure toward matter era which is a saddle point of the theory and allows the evolution to dark energy-dominated universe. Finally, the dark energy-dominated epoch is a stable fixed point and will be the late time attractor for the universe. We also consider future singularities for the two [Formula: see text] and [Formula: see text] cases and for [Formula: see text] and [Formula: see text]. Our results show that for the case of [Formula: see text], the future singularities of the universe will happen in the same condition as do for the Einstein–Hilbert FRW universe. However, a new type of singularity is obtained for [Formula: see text] that is captured by [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text].


2019 ◽  
Vol 28 (06) ◽  
pp. 1950080
Author(s):  
A. Sheykhi ◽  
S. Ghaffari ◽  
H. Moradpour

We study the cosmological consequences of the ghost models of dark energy (DE) in the framework of Hořava–Lifshitz gravity. We calculate the equation-of-state parameter, the deceleration parameter, the classical stability and the dimensionless density parameter of the models in both noninteracting and interacting scenarios. We find that, for some values of the parameter, this model can admit a transition from the deceleration phase to the accelerated phase around [Formula: see text], while at the late time ([Formula: see text]) we have [Formula: see text] meaning that this model mimics a cosmological constant. We find that in the setup of Hořava–Lifshitz gravity, ghost dark energy (GDE) models are classically unstable. We observe that unlike the generalized ghost dark energy (GGDE), the ghost dark energy cannot provide proper behavior for all the cosmological parameters simultaneously, with the same values of the models’ couplings.


Sign in / Sign up

Export Citation Format

Share Document