Ghost dark energy in the deformed Hořava–Lifshitz cosmology

2019 ◽  
Vol 28 (06) ◽  
pp. 1950080
Author(s):  
A. Sheykhi ◽  
S. Ghaffari ◽  
H. Moradpour

We study the cosmological consequences of the ghost models of dark energy (DE) in the framework of Hořava–Lifshitz gravity. We calculate the equation-of-state parameter, the deceleration parameter, the classical stability and the dimensionless density parameter of the models in both noninteracting and interacting scenarios. We find that, for some values of the parameter, this model can admit a transition from the deceleration phase to the accelerated phase around [Formula: see text], while at the late time ([Formula: see text]) we have [Formula: see text] meaning that this model mimics a cosmological constant. We find that in the setup of Hořava–Lifshitz gravity, ghost dark energy (GDE) models are classically unstable. We observe that unlike the generalized ghost dark energy (GGDE), the ghost dark energy cannot provide proper behavior for all the cosmological parameters simultaneously, with the same values of the models’ couplings.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi

We investigate the ghost model of dark energy in the framework of DGP braneworld. We explore the cosmological consequences of this model by determining the equation of state parameter, ωD, the deceleration, and the density parameters. We also examine the stability of this model by studying the squared of the sound speed in the presence/absence of interaction term between dark energy and dark matter. We find out that in the absence of interaction between two dark sectors of the universe we have ωD→-1 in the late time, while in the presence of interaction ωD can cross the phantom line -1. In both cases the squared of sound speed vs2 does not show any signal of stability. We also determine the statefinder diagnosis of this model as well as the ωD-ωD′ plane and compare the results with the ΛCDM model. We find that ωD-ωD′ plane meets the freezing region in the absence of interaction between two dark sectors, while it meets both the thawing and the freezing regions in the interacting case.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma ◽  
Abdulla Al Mamon

In this work, we construct an interacting model of the Rényi holographic dark energy in the Brans-Dicke theory of gravity using Rényi entropy in a spatially flat Friedmann-Lemaître-Robertson-Walker Universe considering the infrared cut-off as the Hubble horizon. In this setup, we then study the evolutionary history of some important cosmological parameters, in particular, deceleration parameter, Hubble parameter, equation of state parameter, and Rényi holographic dark energy density parameter in both nonflat Universe and flat Universe scenarios and also observe satisfactory behaviors of these parameters in the model. We find that during the evolution, the present model can give rise to a late-time accelerated expansion phase for the Universe preceded by a decelerated expansion phase for both flat and nonflat cases. Moreover, we obtain ω D → − 1 as z → − 1 , which indicates that this model behaves like the cosmological constant at the future. The stability analysis for the distinct estimations of the Rényi parameter δ and coupling coefficient b 2 has been analyzed. The results indicate that the model is stable at the late time.


Open Physics ◽  
2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Esmaeil Ebrahimi ◽  
Ahmad Sheykhi ◽  
Hamzeh Alavirad

AbstractWe investigate the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity. First, we study the non-interacting generalized ghost dark energy in a flat Friedmann-Robertson-Walker (FRW) background. We obtain the equation of state parameter, w D = p/ρ, the deceleration parameter, and the evolution equation of the generalized ghost dark energy. We find that, in this case, w D cannot cross the phantom line (w D > −1) and eventually the universe approaches a de-Sitter phase of expansion (w D → −1). Then, we extend the study to the interacting ghost dark energy in both a flat and non-flat FRW universe. We find that the equation of state parameter of the interacting generalized ghost dark energy can cross the phantom line (w D < −1) provided the parameters of the model are chosen suitably. Finally, we constrain the model parameters by using the Markov Chain Monte Carlo (MCMC) method and a combined dataset of SNIa, CMB, BAO and X-ray gas mass fraction.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sharif ◽  
M. Zubair

We develop the connection off(R)theory with new agegraphic and holographic dark energy models. The functionf(R)is reconstructed regarding thef(R)theory as an effective description for these dark energy models. We show the future evolution offand conclude that these functions represent distinct pictures of cosmological eras. The cosmological parameters such as equation of state parameter, deceleration parameter, statefinder diagnostic, andw−w′analysis are investigated which assure the evolutionary paradigm off.


Author(s):  
YUNGUI GONG ◽  
QING GAO ◽  
ZONG-HONG ZHU

We use the SNLS3 compilation of 472 type Ia supernova data, the baryon acoustic oscillation measurement of distance, and the cosmic microwave background radiation data from the seven year Wilkinson Microwave Anisotropy Probe to study the effect of their different combinations on the fittings of cosmological parameters. Neither BAO nor WMAP7 data alone gives good constraint on the equation of state parameter of dark energy, but both WMAP7 data and BAO data help type Ia supernova data break the degeneracies among the model parameters, hence tighten the constraint on the variation of equation of state parameter wa, and WMAP7 data does the job a little better. Although BAO and WMAP7 data provide reasonably good constraints on Ωm and Ωk, it is not able to constrain the dynamics of dark energy, we need SNe Ia data to probe the property of dark energy, especially the variation of the equation of state parameter of dark energy. For the SNLS SNe Ia data, the nuisance parameters α and β are consistent for all different combinations of the above data. Their impacts on the fittings of cosmological parameters are minimal. ΛCDM model is consistent with current observational data.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550048 ◽  
Author(s):  
M. Honarvaryan ◽  
A. Sheykhi ◽  
H. Moradpour

In this paper, we point out thermodynamical description of ghost dark energy (GDE) and its generalization to the early universe. Thereinafter, we find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a dark matter (DM) sector is addressed. We will also find the effects of considering the coincidence problem on the mutual interaction between the dark sectors, and thus the equation of state parameter of DE. Finally, we derive a relation between the mutual interaction of the dark components of the universe, accelerated with the either GDE or its generalization, and the thermodynamic fluctuations.


2020 ◽  
Vol 98 (7) ◽  
pp. 643-649
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi

We explore a spatially homogeneous and isotropic Friedmann–Robertson–Walker (FRW) universe that is filled with agegraphic dark energy (ADE) with mutual interaction with pressureless dark matter in the background of Brans–Dicke (BD) theory. We consider both original and a new type of ADE (NADE) and further assume that the sign of the interaction term can change during the history of the universe. We obtain the equation of the state parameter, the deceleration parameter, and the evolutionary equation for the sign-changeable interacting ADE and NADE in BD cosmology. We find that in both models, the equation of the state parameter, wD, cannot cross the phantom line, although they can predict the universe evolution from the early deceleration phase to the late time acceleration, compatible with observations. We also investigate the sound stability of these models and find out that both models cannot show a signal of stability for different model parameters.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050007 ◽  
Author(s):  
Nasr Ahmed

We discuss the recently suggested Ricci–Gauss–Bonnet holographic dark energy in Chern–Simons modified gravity. We have tested some general forms of the scale factor [Formula: see text], and used two physically reasonable forms which have been proved to be consistent with observations. Both solutions predict a sign flipping in the evolution of cosmic pressure which is positive during the early-time deceleration and negative during the late-time acceleration. This sign flipping in the evolution of cosmic pressure helps in explaining the cosmic deceleration–acceleration transition, and it has appeared in other cosmological models in different contexts. However, this work shows a pressure singularity which needs to be explained. The evolution of the equation of state parameter [Formula: see text] shows the same asymptotic behavior for both solutions indicating a quintessence-dominated universe in the far future. We also note that [Formula: see text] goes to negative values (leaving the decelerating dust-dominated era at [Formula: see text]) at exactly the same time the pressure becomes negative. Again, there is another singularity in the behavior of [Formula: see text] which happens at the same cosmic time of the pressure singularity.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.


Sign in / Sign up

Export Citation Format

Share Document