Exercise mitigates the adverse effects of hyperhomocysteinemia on macrophages, MMP-9, skeletal muscle, and white adipocytes

2014 ◽  
Vol 92 (7) ◽  
pp. 575-582 ◽  
Author(s):  
Lee Winchester ◽  
Sudhakar Veeranki ◽  
Srikanth Givvimani ◽  
Suresh C. Tyagi

Regular exercise is a great medicine with its benefits encompassing everything from prevention of cardiovascular risk to alleviation of different muscular myopathies. Interestingly, elevated levels of homocysteine (Hcy), also known as hyperhomocysteinemia (HHcy), antagonizes beta-2 adrenergic receptors (β2AR), gamma amino butyric acid (GABA), and peroxisome proliferator-activated receptor-gamma (PPARγ) receptors. HHcy also stimulates an elevation of the M1/M2 macrophage ratio, resulting in a more inflammatory profile. In this review we discuss several potential targets altered by HHcy that result in myopathy and excessive fat accumulation. Several of these HHcy mediated changes can be countered by exercise and culminate into mitigation of HHcy induced myopathy and metabolic syndrome. We suggest that exercise directly impacts levels of Hcy, matrix metalloproteinase 9 (MMP-9), macrophages, and G-protein coupled receptors (GPCRs, especially Gs). While HHcy promotes the M1 macrophage phenotype, it appears that exercise may diminish the M1/M2 ratio, resulting in a less inflammatory phenotype. HHcy through its influence on GPCRs, specifically β2AR, PPARγ and GABA receptors, promotes accumulation of white fat, whereas exercise enhances the browning of white fat and counters HHcy-mediated effects on GPCRs. Alleviation of HHcy-associated pathologies with exercise also includes reversal of excessive MMP-9 activation. Moreover, exercise, by reducing plasma Hcy levels, may prevent skeletal muscle myopathy, improve exercise capacity and rescue the obese phenotype. The purpose of this review is to summarize the pathological conditions surrounding HHcy and to clarify the importance of regular exercise as a method of disease prevention.

Author(s):  
Dalia Medhat ◽  
Mona A. El-Bana ◽  
Sherien M. El-Daly ◽  
Magdi N. Ashour ◽  
Tahany R. Elias ◽  
...  

Abstract Objective To evaluate the influence of irisin on the experimental paradigm of non-alcoholic fatty liver (NAFL) as a part of MetS cluster. Methods Forty male albino rats were divided into four groups; normal control, standard diet + irisin, high carbohydrate and fat diet (HCHF), and HCHF + irisin. After the experimental period, levels of fasting blood sugar (FBS), insulin, lipid profile, kidney functions, salusin-alpha (Sal-α), adropin, and retinol-binding protein-4 (RBP-4) were evaluated. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) expression in skeletal muscle was evaluated by quantitative real-time PCR. Aorta, liver, pancreas, and skeletal muscle tissue samples were prepared for histopathological examination. Results Rats administrated HCHF showed elevated levels of FBS, lipid profile, kidney functions, RBP-4, and downregulation of PGC-1α expression along with a decline in levels of insulin, Sal-α, and adropin while administration of irisin significantly attenuated these levels. Conclusions Irisin as based therapy could emerge as a new line of treatment against MetS and its related diseases.


2017 ◽  
Vol 312 (5) ◽  
pp. E394-E406 ◽  
Author(s):  
Samuel Lee ◽  
Teresa C. Leone ◽  
Lisa Rogosa ◽  
John Rumsey ◽  
Julio Ayala ◽  
...  

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy.


2015 ◽  
Vol 308 (9) ◽  
pp. C710-C719 ◽  
Author(s):  
Anna Vainshtein ◽  
Liam D. Tryon ◽  
Marion Pauly ◽  
David A. Hood

Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α. Anna Vainshtein received the AJP-Cell 2015 Paper of the Year award. Listen to a podcast with Anna Vainshtein and coauthor David A. Hood at http://ajpcell.podbean.com/e/ajp-cell-paper-of-the-year-2015-award-podcast/ .


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


Sign in / Sign up

Export Citation Format

Share Document