Oral ethinylestradiol–levonorgestrel normalizes fructose-induced hepatic lipid accumulation and glycogen depletion in female rats

2019 ◽  
Vol 97 (11) ◽  
pp. 1042-1052 ◽  
Author(s):  
Kehinde Samuel Olaniyi ◽  
Lawrence Aderemi Olatunji

The present study investigated the effects of oral ethinylestradiol–levonorgestrel (EEL) on hepatic lipid and glycogen contents during high fructose (HF) intake, and determined whether pyruvate dehydrogenase kinase-4 (PDK-4) and glucose-6-phosphate dehydrogenase (G6PD) activity were involved in HF and (or) EEL-induced hepatic dysmetabolism. Female Wistar rats weighing 140–160 g were divided into groups. The control, EEL, HF, and EEL+HF groups received water (vehicle, p.o.), 1.0 μg ethinylestradiol plus 5.0 μg levonorgestrel (p.o.), fructose (10% w/v), and EEL plus HF, respectively, on a daily basis for 8 weeks. Results revealed that treatment with EEL or HF led to insulin resistance, hyperinsulinemia, increased hepatic uric acid production and triglyceride content, reduced glycogen content, and reduced production of plasma or hepatic glutathione- and G6PD-dependent antioxidants. HF but not EEL also increased fasting glucose and hepatic PDK-4. Nonetheless, these alterations were attenuated by EEL in HF-treated rats. Our results demonstrate that hepatic lipid accumulation and glycogen depletion induced by HF is accompanied by increased PDK-4 and defective G6PD activity. The findings also suggest that EEL would attenuate hepatic lipid accumulation and glycogen depletion by suppression of PDK-4 and enhancement of a G6PD-dependent antioxidant barrier.

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3762
Author(s):  
Jeong Yong Park ◽  
Mi Gyeong Jang ◽  
Jung Min Oh ◽  
Hee Chul Ko ◽  
Sung-Pyo Hur ◽  
...  

Background: Increased dietary fructose consumption is closely associated with lipid and glucose metabolic disorders. Sasa quelpaertensis Nakai possesses various health-promoting properties, but there has been no research on its protective effect against fructose-induced metabolic dysfunction. In this study, we investigated the effects of S. quelpaertensis leaf extract (SQE) on metabolic dysfunction in high-fructose-diet-fed rats. Methods: Animals were fed a 46% carbohydrate diet, a 60% high-fructose diet, or a 60% high-fructose diet with SQE (500 mg/kg of body weight (BW)/day) in drinking water for 16 weeks. Serum biochemical parameters were measured and the effects of SQE on hepatic histology, protein expression, and transcriptome profiles were investigated. Results: SQE improved dyslipidemia and insulin resistance induced in high-fructose-diet-fed rats. SQE ameliorated the lipid accumulation and inflammatory response in liver tissues by modulating the expressions of key proteins related to lipid metabolism and antioxidant response. SQE significantly enriched the genes related to the metabolic pathway, namely, the tumor necrosis factor (TNF) signaling pathway and the PI3K-Akt signaling pathway. Conclusions: SQE could effectively prevent dyslipidemia, insulin resistance, and hepatic lipid accumulation by regulation of metabolism-related gene expressions, suggesting its role as a functional ingredient to prevent lifestyle-related metabolic disorders.


2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


2021 ◽  
pp. 1-26
Author(s):  
Kenta Maegawa ◽  
Haruka Koyama ◽  
Satoru Fukiya ◽  
Atsushi Yokota ◽  
Koichiro Ueda ◽  
...  

Abstract Enterohepatic circulation of 12α-hydroxylated (12αOH) bile acid (BA) is enhanced depending on the energy intake in high-fat diet-fed rats. Such BA metabolism can be reproduced using a diet supplemented with cholic acid (CA), which also induces simple steatosis, without inflammation and fibrosis, accompanied by some other symptoms that are frequently observed in the condition of non-alcoholic fatty liver in rats. We investigated whether supplementation of the diet with raffinose (Raf) improves hepatic lipid accumulation induced by the CA-fed condition in rats. After acclimation to the AIN-93-based control diet, male Wistar rats were fed diets supplemented with a combination of Raf (30 g/kg diet) and/or CA (0.5 g/kg diet) for 4 weeks. Dietary Raf normalised hepatic triglyceride levels (two-way ANOVA P<0.001 for CA, P=0.02 for Raf, and P=0.004 for interaction) in the CA-supplemented diet-fed rats. Dietary Raf supplementation reduced hepatic 12αOH BA concentration (two-way ANOVA P<0.001 for CA, P=0.003 for Raf, and P=0.03 for interaction). The concentration of 12αOH BA was reduced in the aortic and portal plasma. Raf supplementation increased acetic acid concentration in the caecal contents (two-way ANOVA P=0.001 as a main effect). Multiple regression analysis revealed that concentrations of aortic 12αOH BA and caecal acetic acid could serve as predictors of hepatic triglyceride concentration (R2=0.55, P<0.001). However, Raf did not decrease the secondary 12αOH BA concentration in the caecal contents as well as the transaminase activity in the CA diet-fed rats. These results imply that dietary Raf normalises hepatic lipid accumulation via suppression of enterohepatic 12αOH BA circulation.


Sign in / Sign up

Export Citation Format

Share Document