scholarly journals Evaluation of disease, yield and economics associated with fungicide timing in Canadian Western Red Spring wheat

Author(s):  
Mahnoor Asif ◽  
Sheri Strydhorst ◽  
Stephen Strelkov ◽  
Allen Terry ◽  
Michael Harding ◽  
...  

Protection from fungal plant pathogens is key for optimizing the yield and quality of wheat (Triticum aestivum). However, current grower practices and historical research do not always align with respect to optimum fungicide timing to maximize disease control, yield, quality and profitability of Canadian Western Red Spring (CWRS) wheat. Six fungicide treatments were evaluated at eight site-years across Alberta in 2018 and 2019 to determine the optimum time for fungicide application. The treatments included early fungicide applications at BBCH 22-23 (herbicide timing), early to mid-season application at BBCH 30-32 (plant growth regulator timing), ‘traditional’ timing at BBCH 39-45 (flag leaf), and head timing at BBCH 61-63 (fusarium head blight timing), and were compared with a non-treated control. Yield responses to fungicide treatments occurred at 50% of the site-years when disease pressure was 32% higher than in non-responsive site-years. Responsive site-years were characterized by higher relative humidity (65.4 - 74.0%) and an average 273 mm of precipitation. At responsive site-years, McFadden leaf spot disease severity ratings were 50% greater in early August when fungicides were applied at BBCH 22-23 and 30-32 versus at BBCH 39-45. At responsive sites, yield and thousand-kernel weight were 9.3% and 5.2%, higher, respectively, for fungicide applications at BBCH 39-45 and BBCH 61-63 compared with fungicide applications at BBCH 22-23 and BBCH 30-32. The most economically beneficial practices were applications of propiconazole, benzovindiflupyr and azoxystrobin (Trivapro A+B) at BBCH 39-45 or prothioconazole and tebuconazole (Prosaro XTR) at BBCH 61-63 when environmental conditions were conducive for disease development.

2014 ◽  
Vol 94 (5) ◽  
pp. 891-903 ◽  
Author(s):  
M. R. Fernandez ◽  
W. E. May ◽  
S. Chalmers ◽  
M. E. Savard ◽  
A. K. Singh

Fernandez, M. R., May, W. E., Chalmers, S., Savard, M. E. and Singh, A. K. 2014. Are early foliar fungicide applications on durum wheat grown in southeast Saskatchewan beneficial in increasing grain productivity? Can. J. Plant. Sci. 94: 891–903. Producers have expressed interest in applying fungicides early in the development of durum wheat to reduce disease severity and increase grain yield. To address this issue, a field trial was conducted in southeast Saskatchewan (2004–2006) to determine the impacts of single and double foliar fungicide (tebuconazole) applications at various growth stages on leaf spotting, Fusarium head blight/Fusarium-damaged kernels, deoxynivalenol concentration, dark kernel discolouration, and grain traits of durum wheat. In most cases, application at stem elongation was not effective in reducing Fusarium diseases, or improving yield and grain characteristics. Application at flag leaf emergence was more effective, but for the most part, application at anthesis resulted in the most consistent reduction in disease levels, and improvement in test weight. Double fungicide applications (stem elongation or flag leaf emergence, and anthesis) were not more effective in disease control than a single application at anthesis. Grain yield did not differ significantly among any of the treatments. In contrast to Fusarium diseases and leaf spotting, fungicide applications at stem elongation and/or flag leaf emergence resulted in increased kernel weight and percentage dark kernel discolouration, which was significant in 2005 (10.53–10.60% total kernel discolouration in the stem and flag leaf treatments vs. 6.13% for the untreated control). In one or more years, kernel weight was negatively associated with Fusarium disease variables and leaf spotting, but positively associated with kernel discolouration. We conclude that under variable environmental conditions in Saskatchewan, early preventative fungicide use on durum wheat should not be recommended as a strategy to improve productivity, and might even result in increases in dark kernel discolouration and grain downgrading.


2018 ◽  
Author(s):  
Lucky Mehra ◽  
Urmila Adhikari ◽  
Christina Cowger ◽  
Peter S Ojiambo

Septoria nodorum blotch occurs in wheat-growing areas worldwide, but the disease is more prevalent in areas with warm and moist weather, such as the southeastern United States, parts of Europe, southern Brazil, and Australia. The disease affects both the quantity and quality of yield, and the pathogen is capable of affecting wheat at both seedling and adult stages. Historically, losses up to 50% have been reported, in addition to lower grain quality, although in the U.S., lower levels of loss are typical. The yield losses are highest when flag leaf, F-1 (leaf below flag leaf), and F-2 (leaf below F-1) are infected. The disease is known to reduce thousand-kernel-weight, a yield parameter. The fungus undergoes regular cycles of sexual recombination due to the availability of both mating types, and creates genetic variation in its population, thus enhancing its potential to overcome control measures. The pathosystem is also a model system for necrotrophic plant pathogens. So far, nine necrotrophic effectors and host susceptibility gene interaction have been identified, which have the potential to be used in marker assisted selection for breeding resistant wheat varieties.


2018 ◽  
Author(s):  
Lucky Mehra ◽  
Urmila Adhikari ◽  
Christina Cowger ◽  
Peter S Ojiambo

Septoria nodorum blotch occurs in wheat-growing areas worldwide, but the disease is more prevalent in areas with warm and moist weather, such as the southeastern United States, parts of Europe, southern Brazil, and Australia. The disease affects both the quantity and quality of yield, and the pathogen is capable of affecting wheat at both seedling and adult stages. Historically, losses up to 50% have been reported, in addition to lower grain quality, although in the U.S., lower levels of loss are typical. The yield losses are highest when flag leaf, F-1 (leaf below flag leaf), and F-2 (leaf below F-1) are infected. The disease is known to reduce thousand-kernel-weight, a yield parameter. The fungus undergoes regular cycles of sexual recombination due to the availability of both mating types, and creates genetic variation in its population, thus enhancing its potential to overcome control measures. The pathosystem is also a model system for necrotrophic plant pathogens. So far, nine necrotrophic effectors and host susceptibility gene interaction have been identified, which have the potential to be used in marker assisted selection for breeding resistant wheat varieties.


2018 ◽  
Author(s):  
Lucky Mehra ◽  
Urmila Adhikari ◽  
Christina Cowger ◽  
Peter S Ojiambo

Septoria nodorum blotch occurs in wheat-growing areas worldwide, but the disease is more prevalent in areas with warm and moist weather, such as the southeastern United States, parts of Europe, southern Brazil, and Australia. The disease affects both the quantity and quality of yield, and the pathogen is capable of affecting wheat at both seedling and adult stages. Historically, losses up to 50% have been reported, in addition to lower grain quality, although in the U.S., lower levels of loss are typical. The yield losses are highest when flag leaf, F-1 (leaf below flag leaf), and F-2 (leaf below F-1) are infected. The disease is known to reduce thousand-kernel-weight, a yield parameter. The fungus undergoes regular cycles of sexual recombination due to the availability of both mating types, and creates genetic variation in its population, thus enhancing its potential to overcome control measures. The pathosystem is also a model system for necrotrophic plant pathogens. So far, nine necrotrophic effectors and host susceptibility gene interaction have been identified, which have the potential to be used in marker assisted selection for breeding resistant wheat varieties.


Author(s):  
Stephen Larbi-Koranteng ◽  
Richard Tuyee Awuah ◽  
Fredrick Kankam ◽  
Muntala Abdulai ◽  
Marian Dorcas Quain ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


2021 ◽  
Vol 7 (5) ◽  
pp. 365
Author(s):  
Dubraska Moreno-Ruiz ◽  
Linda Salzmann ◽  
Mark D. Fricker ◽  
Susanne Zeilinger ◽  
Alexander Lichius

Trichoderma atroviride is a mycoparasitic fungus used as biological control agent against fungal plant pathogens. The recognition and appropriate morphogenetic responses to prey-derived signals are essential for successful mycoparasitism. We established microcolony confrontation assays using T. atroviride strains expressing cell division cycle 42 (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1) interactive binding (CRIB) reporters to analyse morphogenetic changes and the dynamic displacement of localized GTPase activity during polarized tip growth. Microscopic analyses showed that Trichoderma experiences significant polarity stress when approaching its fungal preys. The perception of prey-derived signals is integrated via the guanosine triphosphatase (GTPase) and mitogen-activated protein kinase (MAPK) signalling network, and deletion of the MAP kinases Trichoderma MAPK 1 (Tmk1) and Tmk3 affected T. atroviride tip polarization, chemotropic growth, and contact-induced morphogenesis so severely that the establishment of mycoparasitism was highly inefficient to impossible. The responses varied depending on the prey species and the interaction stage, reflecting the high selectivity of the signalling process. Our data suggest that Tmk3 affects the polarity-stress adaptation process especially during the pre-contact phase, whereas Tmk1 regulates contact-induced morphogenesis at the early-contact phase. Neither Tmk1 nor Tmk3 loss-of-function could be fully compensated within the GTPase/MAPK signalling network underscoring the crucial importance of a sensitive polarized tip growth apparatus for successful mycoparasitism.


2021 ◽  
Vol 22 (4) ◽  
pp. 2053
Author(s):  
Judit Bányai ◽  
Marco Maccaferri ◽  
László Láng ◽  
Marianna Mayer ◽  
Viola Tóth ◽  
...  

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B.


2007 ◽  
Vol 57 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Garima Jha ◽  
Vanamala Anjaiah

Sign in / Sign up

Export Citation Format

Share Document