scholarly journals Abiotic Stress Response of Near-Isogenic Spring Durum Wheat Lines under Different Sowing Densities

2021 ◽  
Vol 22 (4) ◽  
pp. 2053
Author(s):  
Judit Bányai ◽  
Marco Maccaferri ◽  
László Láng ◽  
Marianna Mayer ◽  
Viola Tóth ◽  
...  

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1516
Author(s):  
Ana María Méndez-Espinoza ◽  
Miguel Garriga ◽  
Sinda Ben Mariem ◽  
David Soba ◽  
Iker Aranjuelo ◽  
...  

Grain development in cereals depends on synthesis and remobilisation compounds such as water-soluble carbohydrates (WSCs), amino acids (AAs), minerals and environmental conditions during pre- and post-anthesis. This study analyses the impact of water stress on metabolite (WSCs, AAs and nitrogen) dynamics between the source (leaves and stems) and sink (grain) organs in triticale, bread wheat, durum wheat and barley. Plants were grown in glasshouse conditions under well-watered (WW) and water-limited (WL) regimes (from flag leaf fully expanded until maturity). The results showed that the stem WSC content and the apparent mobilisation of WSC to the grain were much higher in triticale and were associated with its larger grain size and grain number. In the four cereals, grain weight and the number of kernels per spike were positively associated with stem WSC mobilisation. After anthesis, the AA concentration in leaves was much lower than in the grain. In grain, the main AAs in terms of concentration were Asn, Pro and Gln in triticale, bread, and durum wheat, and Asn, Pro and Val in barley. The water-limited regime reduced grain weight per plant in the four cereal species, but it had no clear effects on WSC content and AAs in leaves and grain. In general, triticale was less affected by WL than the other cereals.


2016 ◽  
Vol 61 (2) ◽  
pp. 113-125
Author(s):  
Gordana Brankovic ◽  
Dejan Dodig ◽  
Desimir Knezevic ◽  
Vesna Kandic ◽  
Jovan Pavlov

The research was aimed at examining variability, variance components, broadsense heritability (h2), expected genetic advance of thousand grain weight (TGW) and grain number per spike (GNS) of 15 genotypes of bread wheat and 15 genotypes of durum wheat. Field trials were carried out during 2010-2011 and 2011-2012 growing seasons at the three sites: Rimski Sancevi, Zemun Polje and Padinska Skela. Results of this investigation showed that the genetic component of variance (?2 g) was predominant for TGW of bread and durum wheat and for GNS of bread wheat. The genotype ? environment interaction (?2 ge) component of phenotypic variance was 8.72 times higher than ?2 g for GNS of durum wheat and pointed to the greater instability of durum wheat genotypes. h2 was very high (>90%) for TGW and GNS of bread wheat, high for TGW of durum wheat - 87.3% and low for GNS of durum wheat - 39.5%. Considering the high values obtained for h2 - 96.4% and the highest value for expected genetic advance as percent of mean (GAM) - 19.3% for TGW of bread wheat, the success of selection for desired values of this yield component can be anticipated. The success of selection cannot be predicted for GNS of durum wheat due to low values obtained for h2 and GAM of 39.5% and 2.8%, respectively.


2004 ◽  
Vol 55 (7) ◽  
pp. 797 ◽  
Author(s):  
D. L. Sharma ◽  
W. K. Anderson

Small grains that pass through a 2-mm slotted screen (sievings or screenings) are one of the most important causes of price dockages of wheat in Australia because grain size variation greatly affects flour yield and commercial value. The aims of this study were to examine the effects of season, time of sowing, plant population, and applied nitrogen, and their interactions with cultivars, on small grain screenings. Twenty-one field experiments involving 16 new cultivars and elite crossbreds, and various management variables, were conducted in the medium (annual rainfall 325–450 mm) and low (annual rainfall <325 mm) rainfall zones of the Northern Agricultural Region of Western Australia over 3 diverse cropping seasons (1999–2001). Rainfall events towards the end of the season were critical to the level of screenings. Screenings were higher in season 2000 with terminal drought stress, but were low in 2001 despite severe drought stress during early growth. Delayed seeding caused higher screenings in 1999 (average rainfall with even distribution) and in 2000 (terminal drought) but not consistently in 2001 when early drought stress restricted tillering and spike size thereby constraining the yield level. Strong varietal and time of sowing interactions were evident but the relationship between maturity group and the level of screenings was not consistent. Rather, the ability of cultivars to adjust yield components was more important; 82% of the total variance in small grain screenings was accounted for by a regression model based on variety-specific kernel weight, post-heading rainfall (from about 2 weeks before anthesis), and location factors. The effect of increasing plant population on screenings was mostly negative, with some minor exceptions for a few cultivars in the low-rainfall zone. As applied nitrogen was increased, screenings generally increased and cultivar influenced this trend more than rainfall zone. It is postulated that for a cultivar to be unaffected by applied nitrogen, it should have inherently higher grain weight as well as high stability of grain weight across nitrogen levels. Applied nitrogen had a significant effect on screenings only at higher plant populations. In experiments where the level of screenings exceeded 5%, the yield components that were significantly associated with screenings, in order of relative importance, were grain weight > grain number/area > grain number/head > grain yield. Cultivars differed in production of screenings in response to plant population, nitrogen fertiliser and sowing time. Harrismith was the most sensitive cultivar and Wyalkatchem was overall the most tolerant cultivar. Delayed seeding had the least effect on the screenings of cultivars Westonia, Carnamah, and Wyalkatchem. Carnamah was the most stable cultivar against higher levels of applied nitrogen, whereas Westonia required high plant numbers to contain screenings. It is concluded that cultivars can be classified according to specific sensitivities, and appropriate management practices may be suggested to growers.


2014 ◽  
Vol 94 (5) ◽  
pp. 891-903 ◽  
Author(s):  
M. R. Fernandez ◽  
W. E. May ◽  
S. Chalmers ◽  
M. E. Savard ◽  
A. K. Singh

Fernandez, M. R., May, W. E., Chalmers, S., Savard, M. E. and Singh, A. K. 2014. Are early foliar fungicide applications on durum wheat grown in southeast Saskatchewan beneficial in increasing grain productivity? Can. J. Plant. Sci. 94: 891–903. Producers have expressed interest in applying fungicides early in the development of durum wheat to reduce disease severity and increase grain yield. To address this issue, a field trial was conducted in southeast Saskatchewan (2004–2006) to determine the impacts of single and double foliar fungicide (tebuconazole) applications at various growth stages on leaf spotting, Fusarium head blight/Fusarium-damaged kernels, deoxynivalenol concentration, dark kernel discolouration, and grain traits of durum wheat. In most cases, application at stem elongation was not effective in reducing Fusarium diseases, or improving yield and grain characteristics. Application at flag leaf emergence was more effective, but for the most part, application at anthesis resulted in the most consistent reduction in disease levels, and improvement in test weight. Double fungicide applications (stem elongation or flag leaf emergence, and anthesis) were not more effective in disease control than a single application at anthesis. Grain yield did not differ significantly among any of the treatments. In contrast to Fusarium diseases and leaf spotting, fungicide applications at stem elongation and/or flag leaf emergence resulted in increased kernel weight and percentage dark kernel discolouration, which was significant in 2005 (10.53–10.60% total kernel discolouration in the stem and flag leaf treatments vs. 6.13% for the untreated control). In one or more years, kernel weight was negatively associated with Fusarium disease variables and leaf spotting, but positively associated with kernel discolouration. We conclude that under variable environmental conditions in Saskatchewan, early preventative fungicide use on durum wheat should not be recommended as a strategy to improve productivity, and might even result in increases in dark kernel discolouration and grain downgrading.


2017 ◽  
Vol 9 (3) ◽  
pp. 1338-1342
Author(s):  
Amarjeet Kumar ◽  
Swati Swati ◽  
N. K. Singh ◽  
Birendra Prasad ◽  
Anil Kumar

To estimate the level of heat tolerance for different genotypes of bread wheat with respect to morphological characters under studied grains/ spike, grain weight/spike, grain filling duration (duration between the anthesis stage and the physiological maturity), 1000-kernel weight and grain yield/plant for yield. Physiological traits like relative injury (RI %), chlorophyll content, canopy temperature depression (CTD), were used in present investigation to contribute toward capability of plants to tolerate heat stress of the yield contributing traits during heat stress.The findings of present investigation had clearly explained that influences of environments on morpho physiological characters i.e. grain yield per plant (14886.15) and its attributing traits i.e. spike length (459.7), tillers per plant (622.34), spikelets per spike (278.1), 1000 kernel weight (13262.39), grain weight per spike (177.89) and number of grains per spike (2898.44) in wheat were highly significant and positive. Among the parent and their crosses had handsome amount of variations across the environment. The results of interaction for environments with parents, lines, testers and their crosses with respect to morpho physiological characters in wheat was found significant for some characters while variation was absent for other characters studied. Physiological traits like relative injury per cent, chlorophyll content and CTD were vital parameters to quantify the degree of heat stress to develop tolerant genotypes which is urgent and present need under changing climate scenario.


2016 ◽  
Vol 49 (3) ◽  
pp. 27-38 ◽  
Author(s):  
M. Kamel ◽  
A. Yazdansepas

Abstract In current study, 14 genotypes of bread wheat chosen by breeding tests in Zanjan Agricultural Research Institute of Iran were exposed to two experiment under irrigation and late season drought stress. The experiments were conducted between 2012-2013 in a randomized complete block design with three replications. Analysis of variance showed that, under non-stress condition, the differences among genotypes were significant regarding biological yield and grain weight per spike, while under stress condition in addition there were significant differences about grain yield and biological yield at pollination stage. Under normal and stress condition, the highest and the lowest biological yield was observed in genotype 3 (52.6 g per 15 stems), genotype 2 (35 g per 15 stems), respectively. The average weight of grain per spike decreased by 44.38 % under drought stress condition. In flag leaf removal experiment, results showed that the genotypes significantly differed under non-stress condition regarding the spike weight, grain weight per spike and weight of the leaves, except flag leaf, while under stress condition there were significant differences among genotypes in terms of biological yield, spike weight, peduncle weight at pollination stage, grain weight pre spike and weight of the leaves, except flag leaf. In leaves defoliation (except flag leaf), results showed that the differences among genotypes under normal and stress condition regarding spike weight, grain number per spike, biological yield, peduncle weight, and flag leaf weight were significant.


1970 ◽  
Vol 36 (1) ◽  
pp. 1-12
Author(s):  
Alpay Balkan ◽  
Temel Gençtan ◽  
Oguz Bilgin

This research was carried out in experimental field of Field Crops Department of Agricultural Faculty of Namik Kemal University in randomized split block design with three replications per treatment during 2004-2005 and 2005-2006. The objective of this study was to find out the contribution rates of awn, flag leaf, 1st upper leaf blade, 2nd upper leaf blade and other leaf blades to main yield components in three durum wheat cultivars (cv. Kiziltan-91, Kunduru-1149, and Yelken-2000). The results of this experiment showed that removal of awn, flag leaf, 1st upper leaf blade, 2nd upper leaf blade, and other leaf blades reduced significantly spike weight, number of grains per spike, grain weight per spike, and 1000-grain weight except the number of spikelets per spike. It was concluded that the organs play an important role in grain yield in durum wheat during grain filling stage.   Keywords: Photosynthetic organs; yield components; durum wheat.DOI: http://dx.doi.org/10.3329/bjar.v36i1.9224 BJAR 2011; 36(1): 1-12


2019 ◽  
Vol 11 (4) ◽  
pp. 300-306
Author(s):  
R. Dragov

Abstract. The aim of the study is to investigate the heterosis manifestations in durum wheat for quantitative traits related to spike productivity. Diallel cross includes five modern varieties of durum wheat: Victoria (BG), Deni (BG), Superdur, Progress (BG), Predel (BG). The heterosis manifestations of the ten crosses are traced for the traits: spikelet number per spike, number of kernel per spike, grain weight per spike and thousand kernel weight. The experiment is conducted in the 2014-2016 period in the experimental field of FCI- Chirpan. Standard technology for the cultivation of durum wheat is applied. The trials are organized in a randomized block design with three replications. Of each replication 30 plants are randomly picked and harvested for biometric analysis. The mean values by years from the F1 spike biometric measurements are included in the statistical analysis to determine the mid parent and better parent heterosis. For spikelet number per spike, seven crosses show high parent heterosis in the first year, four in the second and six in the third year. In all years, hybrids with a variety of Victoria have more spikelet number per spike and show better parent heterosis. For the trait kernel number per spike it is observed that combinations with Deni variety in most cases have better parent heterosis. In all years, the cross Superdur x Predel indicates high parent heterosis for this trait. For grain weight per spike most of the combinations exhibit high levels of better parent heterosis. When the Deni variety is used as female parent, all hybrid combinations show high levels of heterosis for the trait grain weight per spike. In regard to the thousand kernel weight different heterosis levels are observed, with only negative values in the first year. In the other two years in hybrid combinations there is positive heterosis in one year and negative in another year. The participation of the Deni variety in hybrid combinations leads to better parent heterosis for this trait. The data allow the use of these crosses directly in the breeding of durum wheat to increase individual traits and/or increase productivity.


2019 ◽  
Vol 174 (2) ◽  
pp. 190-208 ◽  
Author(s):  
Petros Vahamidis ◽  
Andreas J. Karamanos ◽  
Garyfalia Economou

Sign in / Sign up

Export Citation Format

Share Document