PRODUCTION AND PROPERTIES OF 2, 3-BUTANEDIOL: III. STUDIES ON THE BIOCHEMISTRY OF CARBOHYDRATE FERMENTATION BYAEROBACILLUS POLYMYXA

1945 ◽  
Vol 23b (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. A. Adams ◽  
R. Y. Stanier

Carbon balances have been obtained for the fermentation of glucose, xylose, pyruvic acid, and mannitol by Aerobacillus polymyxa. The chief products from glucose are 2,3-butanediol, ethanol, carbon dioxide, and hydrogen; in addition small amounts of acetic acid and acetoin are formed. In glucose fermentations under the conditions used the butanediol: ethanol ratio is about 1:1. The products of xylose fermentation are very similar, although the butanediol: ethanol ratio is shifted in favour of ethanol. From pyruvic acid the chief end-products are acetoin, acetic acid, carbon dioxide and hydrogen with almost no butanediol and ethanol production. In the fermentation of mannitol a large amount of lactic acid is produced, while butanediol production is markedly decreased, the butanediol: ethanol ratio being 1:7.

1929 ◽  
Vol 19 (4) ◽  
pp. 627-648 ◽  
Author(s):  
V. Subrahmanyan

(1) In absence of decomposing organic matter addition of nitrate led to no loss of nitrogen.(2) On addition of small quantities of fermentable matter such as glucose there was (a) rapid depletion of nitrates and oxygen, but no denitrification, and (b) increase in acidity, carbon dioxide and bacteria. The greater part of the soluble nitrogen was assimilated by microorganisms or otherwise converted and the greater part of the added carbohydrate was transformed into lactic, acetic and butyric acids.(3) The organic acids were formed from a variety of carbohydrates. Lactic acid was the first to be observed and appeared to be formed mainly by direct splitting of the sugar. It decomposed readily, forming acetic and butyric acids. Some acetic acid was formed by direct oxidation of lactic acid, with pyruvic acid as the intermediate product. All the acids were, on standing, converted into other forms by micro-organisms.


1972 ◽  
Vol 27 (3) ◽  
pp. 553-560 ◽  
Author(s):  
J. L. Clapperton ◽  
J. W. Czerkawski

1. Propane-1:2-diol (loog/d) was infused through a cannula into the rumen of sheep receiving a ration of hay and dried grass. The concentration of volatile fatty acids, propanediol, lactic acid and of added polyethylene glycol, and the pH of the rumen contents were measured. The energy metabolism of the sheep was also determined.2. Most of the propanediol disappeared from the rumen within 4 h of its infusion. The infusion of propanediol resulted in a 10% decrease in the concentration of total volatile acids; the concentration of acetic acid decreased by about 30%, that of propionic acid increased by up to 60% and there was no change in the concentration of butyric acid.3. The methane production of the sheep decreased by about 9% after the infusion of propanediol and there were increases in the oxgyen consumption, carbon dioxide production and heat production of the animals; each of these increases was equivalent to about 40% of the theoretical value for the complete metabolism of 100 g propanediol.4. It is concluded that, when propanediol is introduced into the rumen, a proportion is metabolized in the rumen and a large proportion is absorbed directly. Our thanks are due to Dr J. H. Moore for helpful discussions, to Mr D. R. Paterson, Mr J. R. McDill and Mr C. E. Park for looking after the animals and to Miss K. M. Graham, Miss A. T. McKay and Mrs C. E. Ramage for performing the analyses.


1957 ◽  
Vol 8 (1) ◽  
pp. 55 ◽  
Author(s):  
SJ Edmonds

The consumption of oxygen of Dendrostomum cymodoceae at 22'C in aerated sea-water varied from 4-5-5.5 μl/g (wet weight)/hr for adults to 20-31 μ/g/hr for juveniles. The production of carbon dioxide was 13-17 μ/g/hr (juveniles) and the R.Q. varied from 0.55 to 0.67 (juveniles). The rate of consunlption of oxygen decreased as the tension of the dissolved oxygen decreased. The oxygen combined with the pigment of the blood was 2.1 vols. of oxygen per 100 vols. of blood and the ratio of blood volume (ml) to total weight (g) of the animal was 0.47. D. cymodoceae was able to live under anaerobic conditions in sea-water for as long as 5 days and in paraffin oil for 4 days. The haemerythrin in the blood of animals kept under oil was found to be reduced after about 6 hr. Lactic acid was identified as one of the end-products of anaerobiosis. The concentration of lactic acid in the blood of animals living under anaerobic conditions increased after 60 hr from 7-12 to 46-61 μg/ml of blood. The ability to revert to anaerobiosis may have survival value for the species.


1954 ◽  
Vol 32 (1) ◽  
pp. 147-153 ◽  
Author(s):  
A. C. Neish ◽  
F. J. Simpson

D-Glucose-1-C14, D-arabinose-1-C14, and L-arabinose-1-C14 were dissimilated anaerobically by Aerobacter aerogenes. The major products (2,3-butanediol, ethanol, acetic acid, lactic acid, formic acid, and carbon dioxide) were isolated and the location of C14 determined. The products from glucose were all labeled, mainly in the methyl groups, in agreement with the hypothesis that they were derived from methyl-labeled pyruvate formed by the reactions of the classical Embden–Meyerhof scheme for glycolysis. The products from both pentoses appeared to have been formed from pyruvate labeled in both the methyl and carboxyl groups with twice as much C14 in the methyl group as in the carboxyl group. This result may be explained quantitatively by a hypothesis assuming complete conversion of pentose to triose via a heptulose.


1989 ◽  
Vol 44 (5) ◽  
pp. 598-608 ◽  
Author(s):  
Rüdiger Blume ◽  
Dagmar Wiechoczek ◽  
Heinrich Meier ◽  
Frank Wedekind

The temporal degradation of the Belousov-Zhabotinskii substrates lactic acid, pyruvic acid, bromo- and dibromo pyruvic acid is investigated. The only final product of non-brominated substrates is acetic acid. From brominated educts only brominated acetic acids result. The concentrations of the stable products are determined as a function of time. The gross reactions are mainly based on simple consecutive first order reactions. For the pyruvic acid rate constants are determined.


1968 ◽  
Vol 14 (7) ◽  
pp. 749-753 ◽  
Author(s):  
Yu-Ying F. Li ◽  
Lucille K. Georg

Gas–liquid chromatography (g.l.c.) was used for the analysis of certain metabolic end products of Actinomyces propionicus, as an aid in the separation of this organism from the morphologically similar Actinomyces species, A. israelii and A. naeslundii. Profiles of the chromatograms for the major volatile acids of five strains of A. propionicus studied were found to be distinct from those of four strains of A. israelii and four strains of A. naeslundii. The ratio of propionic acid to acetic acid was approximately 50 times as great for A. propionicus as for the other Actinomyces species. Formic acid was present in significant amounts in both A. israelii and A. naeslundii, but was present only in trace amounts in A. propionicus.Two major nonvolatile acids, lactic and succinic, were identified for the A. israelii and A. naeslundii strains. One of the A. propionicus strains also showed both acids in significant amounts; however, the other four strains of A. propionicus showed succinic acid in large amounts, but only trace amounts of lactic acid.


1954 ◽  
Vol 32 (3) ◽  
pp. 147-153 ◽  
Author(s):  
A. C. Neish ◽  
F. J. Simpson

D-Glucose-1-C14, D-arabinose-1-C14, and L-arabinose-1-C14 were dissimilated anaerobically by Aerobacter aerogenes. The major products (2,3-butanediol, ethanol, acetic acid, lactic acid, formic acid, and carbon dioxide) were isolated and the location of C14 determined. The products from glucose were all labeled, mainly in the methyl groups, in agreement with the hypothesis that they were derived from methyl-labeled pyruvate formed by the reactions of the classical Embden–Meyerhof scheme for glycolysis. The products from both pentoses appeared to have been formed from pyruvate labeled in both the methyl and carboxyl groups with twice as much C14 in the methyl group as in the carboxyl group. This result may be explained quantitatively by a hypothesis assuming complete conversion of pentose to triose via a heptulose.


1953 ◽  
Vol 141 (904) ◽  
pp. 321-337 ◽  

Barker A Saifl (1953 b ), suggested that the initial rapid increase and the subsequent slower decrease in the CO 2 output of potatoes in air after a peroid under anaerobic conditions might be partly related to a quick formation of pyruvic acid from the accumulated lactic acid and to the respiration of the Pyruvic acid via krebs cycle (krebs & johnson 1937; krebs 1952). Information bearing on the associated changes in pyruvic and α-ketoglutaric acid has now been obtained using a technique (Friedemann & Haugen 1943; Friedemann 1950) which while not fully specific gives values that are known to include true pyruvic acid and true α-ketoglutaric acid as well as non-pyruvic and non-α-ketoglutaric acid material respectively. Associated with the loss of Lactic acid in air after nitrogen and the accompanying increase followed by a decrease in the CO 2 output, Mentioned above, there was first a rapid increase in the content of 'pyruvic' and 'α-ketoglutaric acid' and then a prolonged decrease in these fractions. The analysis of the interrelation between the loss of lactic acid and the production of CO 2 and of the keto-acids, and between the changes in the rate of CO2 output and the changes in the concentration of the keto-acids and of sucrose, is taken up in the next paper in this series (Barker & Mapson 1953).


Sign in / Sign up

Export Citation Format

Share Document