Influence of snow on near-surface ground temperatures in upland and alluvial environments of the outer Mackenzie Delta, Northwest Territories1This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada.

2012 ◽  
Vol 49 (8) ◽  
pp. 895-913 ◽  
Author(s):  
P.D. Morse ◽  
C.R. Burn ◽  
S.V. Kokelj

Relations between snow cover, active-layer thickness, and near-surface ground temperatures were determined in 2005–2009 for a diverse range of alluvial and upland settings in the outer Mackenzie Delta. Here, the snow cover developed primarily by wind redistribution, with its spatial variation controlled by topography in uplands and vegetation height in alluvial lowlands. Snow cover was the primary influence on freeze-back duration and the mean annual temperature at the top of permafrost (TTOP), with the difference in median TTOP between alluvial (–3.7 °C) and upland (–6.1 °C) settings related to the greater snow depth and soil moisture in the alluvial plain. The active layer was generally deeper in the wet alluvial lowlands, where the average duration of active-layer freeze back (101 days) was nearly double the time taken in the well-drained uplands (55 days). The surface offset (ΔTS; up to 11 °C) dominated the difference between annual mean air temperature (AMAT) and TTOP (ΔT). In alluvial terrain, ΔTS varied with snow depth, but in the uplands, ΔTS was more consistent from site to site. The small thermal offset (<2 °C) was slightly greater in alluvial terrain than in the uplands. The overall range in ΔT (2–10 °C) led to a range during the study of 7.2 °C in TTOP at the sites. The range in AMAT was 1.3 °C but up to 1.7 °C in TTOP at any one site. Permafrost was well established throughout the area except adjacent to channels where TTOP was close to 0 °C.


2002 ◽  
Vol 39 (11) ◽  
pp. 1657-1674 ◽  
Author(s):  
J Ross Mackay ◽  
C R Burn

Active-layer thickness, snow depth, minimum soil temperatures, near-surface ground ice, soil heave, and permafrost temperatures have been measured for over 20 years following the 1978 artificial drainage of Lake Illisarvik. Measurements of active-layer thickness and other variables have been made at 25-m intervals along the major and minor axes of the oval-shaped drained-lake bed. Permafrost aggradation commenced in the lake bottom during the first winter following drainage. Before the establishment of vegetation, there was little snow cover, minimum ground temperatures were low, and the active layer was relatively thin. However, both snow depth and minimum ground temperatures have risen where vegetation has grown, the active layer has thickened, and in response, the temperature in permafrost has gradually increased. In the lake bottom, the change in snow depth associated with vegetation growth has been the dominant control on variation in active-layer thickness and not summer weather conditions, which are well correlated with thaw depths along an active-layer course established in the adjacent tundra. Changes in elevation of the surface of the lake bed have been measured with respect to some 40 bench marks anchored in permafrost, and indicate vertical movements of the surface associated with frost heave, thaw subsidence, and the growth of aggradational ice. The ground ice content of near-surface permafrost determined by drilling is in close agreement with the measured uplift of the lake bed. The rate of growth of aggradational ice has been ~0.5 cm a–1 over 20 years.



2012 ◽  
Vol 49 (8) ◽  
pp. 877-894 ◽  
Author(s):  
M.J. Palmer ◽  
C.R. Burn ◽  
S.V. Kokelj

Air and near-surface ground temperatures, late-winter snow conditions, and characteristics of the vegetation cover and soil were measured across the forest–tundra transition in the uplands east of the Mackenzie Delta, Northwest Territories, in 2004–2010. Mean late-winter snow depth decreased northward from 73 cm in the subarctic boreal forest near Inuvik to 22 cm in low-shrub tundra. Annual near-surface ground temperatures decreased northward by 0.1–0.3 °C/km near the northern limit of trees, in association with an abrupt change in snow depth. The rate decreased to 0.01–0.06 °C/km in the tundra. The freezing season is twice as long as the thawing season in the region, so measured differences in the regional ground thermal regime were dominated by the contrast in winter surface conditions between forest and tundra.



2007 ◽  
Vol 44 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Ming-ko Woo ◽  
Michael Mollinga ◽  
Sharon L Smith

The variability of maximum active layer thickness in boreal and tundra environments has important implications for hydrological processes, terrestrial and aquatic ecosystems, and the integrity of northern infrastructure. For most planning and management purposes, the long-term probability distribution of active layer thickness is of primary interest. A robust method is presented to calculate maximum active layer thickness, employing the Stefan equation to compute phase change of moisture in soils and using air temperature as the sole climatic forcing variable. Near-surface ground temperatures (boundary condition for the Stefan equation) were estimated based on empirical relationships established for several sites in the Mackenzie valley. Simulations were performed for typically saturated mineral soils, overlain with varying thickness of peat in boreal and tundra environments. The probability distributions of simulated maximum active layer thickness encompass the range of measured thaw depths provided by field data. The effects of climate warming under A2 and B2 scenarios for 2050 and 2100 were investigated. Under the A2 scenario in 2100, the simulated median thaw depth under a thin organic cover may increase by 0.3 m, to reach 1 m depth for a tundra site and 1.6 m depth for a boreal site. The median thaw depth in 2100 is dampened by about 50% under a 1 m thick organic layer. Without an insulating organic cover, thaw penetration can increase to reach 1.7 m at the tundra site. The simulations provide quantitative support that future thaw penetration in permafrost terrain will deepen differentially depending on location and soil.



2021 ◽  
Author(s):  
Filip Hrbáček ◽  
Zbyněk Engel ◽  
Michaela Kňažková ◽  
Jana Smolíková

Abstract. This study aims to assess the role of ephemeral snow cover on ground thermal regime and active layer thickness in two ground temperature measurement profiles on the Circumpolar Active Layer Monitoring Network – South (CALM-S) JGM site on James Ross Island, eastern Antarctic Peninsula during the high austral summer 2018. The snowstorm of 13–14 January created a snowpack of recorded depth of up to 38 cm. The snowpack remained on the study site for 12 days in total and covered 46 % of its area six days after the snowfall. It directly affected ground thermal regime in a study profile AWS-JGM while the AWS-CALM profile was snow-free. The thermal insulation effect of snow cover led to a decrease of mean summer ground temperatures on AWS-JGM by ca 0.5–0.7 °C. Summer thawing degree days at a depth of 5 cm decreased by ca 10 % and active layer was ca 5–10 cm thinner when compared to previous snow-free summer seasons. Surveying by ground penetrating radar revealed a general active layer thinning of up to 20 % in those parts of the CALM-S which were covered by snow of > 20 cm depth for at least six days.



2020 ◽  
Author(s):  
Margareta Johansson ◽  
Jonas Åkerman ◽  
Gesche Blume-Werry ◽  
Terry V. Callaghan ◽  
Torben R. Christensen ◽  
...  

&lt;p&gt;Snow depth increases observed and predicted in the sub-arctic are of critical importance for the dynamics of lowland permafrost and vegetation. Snow acts as an insulator that protects vegetation but may lead to permafrost degradation. In the Abisko area, in northernmost Sweden, there has been an increasing trend in snow depth during the last Century. Downscaled climate scenarios predict an increase in precipitation by 1.5 - 2% per decade for the coming 60 years. The observed changes in snow cover have affected peat mires in this area as thawing of permafrost, increases in active layer thickness and associated vegetation changes have been reported during the last decades. An experimental manipulation was set up at one of these lowland permafrost sites in the Abisko area (68&amp;#176;20&amp;#8217;48&amp;#8217;&amp;#8217;N, 18&amp;#176;58&amp;#8217;16&amp;#8217;&amp;#8217;E) 15 years ago, to simulate projected future increases in winter precipitation and to study their effect on permafrost and vegetation. The snow cover has been more than twice as thick in manipulated plots compared to control plots and it has had a large impact on permafrost and vegetation. It resulted in statistically significant differences in mean winter and minimum ground temperatures between the control and the manipulated plots. Already after three years there was a statistically significant difference between active layer thickness in the manipulated plots compared to the control plots. In 2019, the active layer thickness in the control plots were around 70 cm whereas in the manipulated plots it was 110 cm. The increased active layer thickness has led to surface subsidence due to melting of ground ice in all the manipulated plots. The increased snow thickness has prolonged the duration of the snow cover in spring with up to 22 days. However, this loss in early season photosynthesis was well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons in the manipulated plots. Eriophorum vaginatum is a species that has been especially favored in the manipulated plots. It has increased both in number and in size. Underneath the soil surface, the roots have also been affected. There has been a strong increase in total root length and growth in the active layer, and deep roots has invaded the newly thawed permafrost in the manipulated plots. The increased active layer thickness has also had an effect on the bacterial community composition in the newly thawed areas. According to past, century-long patterns of increasing snow depth and projections of continuing increases, it is very likely that the changes in permafrost and vegetation that have been demonstrated by this experimental treatment will occur in the future under natural conditions.&lt;/p&gt;



2017 ◽  
Vol 11 (1) ◽  
pp. 585-607 ◽  
Author(s):  
Anna Haberkorn ◽  
Nander Wever ◽  
Martin Hoelzle ◽  
Marcia Phillips ◽  
Robert Kenner ◽  
...  

Abstract. In this study we modelled the influence of the spatially and temporally heterogeneous snow cover on the surface energy balance and thus on rock temperatures in two rugged, steep rock walls on the Gemsstock ridge in the central Swiss Alps. The heterogeneous snow depth distribution in the rock walls was introduced to the distributed, process-based energy balance model Alpine3D with a precipitation scaling method based on snow depth data measured by terrestrial laser scanning. The influence of the snow cover on rock temperatures was investigated by comparing a snow-covered model scenario (precipitation input provided by precipitation scaling) with a snow-free (zero precipitation input) one. Model uncertainties are discussed and evaluated at both the point and spatial scales against 22 near-surface rock temperature measurements and high-resolution snow depth data from winter terrestrial laser scans.In the rough rock walls, the heterogeneously distributed snow cover was moderately well reproduced by Alpine3D with mean absolute errors ranging between 0.31 and 0.81 m. However, snow cover duration was reproduced well and, consequently, near-surface rock temperatures were modelled convincingly. Uncertainties in rock temperature modelling were found to be around 1.6 °C. Errors in snow cover modelling and hence in rock temperature simulations are explained by inadequate snow settlement due to linear precipitation scaling, missing lateral heat fluxes in the rock, and by errors caused by interpolation of shortwave radiation, wind and air temperature into the rock walls.Mean annual near-surface rock temperature increases were both measured and modelled in the steep rock walls as a consequence of a thick, long-lasting snow cover. Rock temperatures were 1.3–2.5 °C higher in the shaded and sunny rock walls, while comparing snow-covered to snow-free simulations. This helps to assess the potential error made in ground temperature modelling when neglecting snow in steep bedrock.



2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.



2013 ◽  
Vol 7 (2) ◽  
pp. 631-645 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of active-layer thickness (ALT) in permafrost regions during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while the increase in ALT in North American watersheds was not significant. However, ALT in the North American watersheds has been negatively anomalous since 1990 when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher annual thawing index (ATI) in the Mackenzie and Yukon basins has been offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing ATI together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. The different ALT anomalies between Eurasian and North American watersheds highlight increased importance of the variability of hydrological variables.



2019 ◽  
Vol 9 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Filip Hrbáček ◽  
Daniel Nývlt ◽  
Kamil Láska ◽  
Michaela Kňažková ◽  
Barbora Kampová ◽  
...  

This study summarizes the current state of the active layer and permafrost research on James Ross Island. The analysis of climate parameters covers the reference period 2011–2017. The mean annual air temperature at the AWS-JGM site was -6.9°C (ranged from -3.9°C to -8.2°C). The mean annual ground temperature at the depth of 5 cm was -5.5°C (ranged from -3.3°C to -6.7°C) and it also reached -5.6°C (ranged from -4.0 to -6.8°C) at the depth of 50 cm. The mean daily ground temperature at the depth of 5 cm correlated moderately up to strongly with the air temperature depending on the season of the year. Analysis of the snow effect on the ground thermal regime confirmed a low insulating effect of snow cover when snow thickness reached up to 50 cm. A thicker snow accumulation, reaching at least 70 cm, can develop around the hyaloclastite breccia boulders where a well pronounced insulation effect on the near-surface ground thermal regime was observed. The effect of lithology on the ground physical properties and the active layer thickness was also investigated. Laboratory analysis of ground thermal properties showed variation in thermal conductivity (0.3 to 0.9 W m-1 K-1). The thickest active layer (89 cm) was observed on the Berry Hill slopes site, where the lowest thawing degree days index (321 to 382°C·day) and the highest value of thermal conductivity (0.9 W m-1 K-1) was observed. The clearest influence of lithological conditions on active layer thickness was observed on the CALM-S grid. The site comprises a sandy Holocene marine terrace and muddy sand of the Whisky Bay Formation. Surveying using a manual probe, ground penetrating radar, and an electromagnetic conductivity meter clearly showed the effect of the lithological boundary on local variability of the active layer thickness.





Sign in / Sign up

Export Citation Format

Share Document