15 years of snow manipulation reveals huge impact on lowland permafrost and vegetation

Author(s):  
Margareta Johansson ◽  
Jonas Åkerman ◽  
Gesche Blume-Werry ◽  
Terry V. Callaghan ◽  
Torben R. Christensen ◽  
...  

<p>Snow depth increases observed and predicted in the sub-arctic are of critical importance for the dynamics of lowland permafrost and vegetation. Snow acts as an insulator that protects vegetation but may lead to permafrost degradation. In the Abisko area, in northernmost Sweden, there has been an increasing trend in snow depth during the last Century. Downscaled climate scenarios predict an increase in precipitation by 1.5 - 2% per decade for the coming 60 years. The observed changes in snow cover have affected peat mires in this area as thawing of permafrost, increases in active layer thickness and associated vegetation changes have been reported during the last decades. An experimental manipulation was set up at one of these lowland permafrost sites in the Abisko area (68°20’48’’N, 18°58’16’’E) 15 years ago, to simulate projected future increases in winter precipitation and to study their effect on permafrost and vegetation. The snow cover has been more than twice as thick in manipulated plots compared to control plots and it has had a large impact on permafrost and vegetation. It resulted in statistically significant differences in mean winter and minimum ground temperatures between the control and the manipulated plots. Already after three years there was a statistically significant difference between active layer thickness in the manipulated plots compared to the control plots. In 2019, the active layer thickness in the control plots were around 70 cm whereas in the manipulated plots it was 110 cm. The increased active layer thickness has led to surface subsidence due to melting of ground ice in all the manipulated plots. The increased snow thickness has prolonged the duration of the snow cover in spring with up to 22 days. However, this loss in early season photosynthesis was well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons in the manipulated plots. Eriophorum vaginatum is a species that has been especially favored in the manipulated plots. It has increased both in number and in size. Underneath the soil surface, the roots have also been affected. There has been a strong increase in total root length and growth in the active layer, and deep roots has invaded the newly thawed permafrost in the manipulated plots. The increased active layer thickness has also had an effect on the bacterial community composition in the newly thawed areas. According to past, century-long patterns of increasing snow depth and projections of continuing increases, it is very likely that the changes in permafrost and vegetation that have been demonstrated by this experimental treatment will occur in the future under natural conditions.</p>

2013 ◽  
Vol 7 (2) ◽  
pp. 631-645 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of active-layer thickness (ALT) in permafrost regions during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while the increase in ALT in North American watersheds was not significant. However, ALT in the North American watersheds has been negatively anomalous since 1990 when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher annual thawing index (ATI) in the Mackenzie and Yukon basins has been offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing ATI together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. The different ALT anomalies between Eurasian and North American watersheds highlight increased importance of the variability of hydrological variables.


2021 ◽  
Author(s):  
Didac Pascual Descarrega ◽  
Margareta Johansson

<p>Winter warming events (WWE) in the Swedish subarctic are abrupt and short-lasting (hours-to-days) events of positive air temperature that occur during wintertime, sometimes accompanied by rainfall (rain on snow; ROS). These events cause changes in snow properties, which affect the below-ground thermal regime that, in turn, controls a suite of ecosystem processes ranging from microbial activity to permafrost and vegetation dynamics. For instance, winter melting can cause ground warming due to the shortening of the snow cover season, or ground cooling as the reduced snow depth and the formation of refrozen layers of high thermal conductivity at the base of the snowpack facilitate the release of soil heat. Apart from these interacting processes, the overall impacts of WWE on ground temperatures may also depend on the timing of the events and the preceding snowpack characteristics. The frequency and intensity of these events in the Arctic, including the Swedish subarctic, has increased remarkably during the recent decades, and is expected to increase even further during the 21st Century. In addition, snow depth (not necessarily snow duration) is projected to increase in many parts of the Arctic, including the Swedish subarctic. In 2005, a manipulation experiment was set up on a lowland permafrost mire in the Swedish subarctic, to simulate projected future increases in winter precipitation. In this study, we analyse this 15-year record of ground temperature, active layer thickness, and meteorological variables, to evaluate the short- (days to weeks) and long-term (up to 1 year) impacts of WWE on the thermal dynamics of lowland permafrost, and provide new insights into the influence of the timing of WWE and the underlying snowpack conditions on the thermal response of permafrost. On the short-term, the thermal responses to WWE are faster and stronger in areas with a shallow snowpack (5-10 cm), although these responses are more persistent in areas with a thicker snowpack (>25 cm), especially after ROS events. On the long term, permafrost in areas with a thicker snowpack exhibit a more durable warming response to WWE that results in thicker active layers at the end of the season. On the contrary, we do not observe a correlation between WWE and end of season active layer thickness in areas with a shallow snowpack. </p>


2021 ◽  
Vol 11 (24) ◽  
pp. 11668
Author(s):  
Mari Carmen López-González ◽  
Gonzalo del Pozo ◽  
Diego Martín-Martín ◽  
Laura Muñoz-Díaz ◽  
José Carlos Pérez-Martínez ◽  
...  

Perovskite solar cells (PSCs) have become very popular due to the high efficiencies achieved. Nevertheless, one of the main challenges for their commercialization is to solve their instability issues. A thorough understanding of the processes taking place in the device is key for the development of this technology. Herein, J-V measurements have been performed to characterize PSCs with different active layer thicknesses. The solar cells’ parameters in pristine devices show no significant dependence on the active layer thickness. However, the evolution of the solar cells’ efficiency under ISOS-L1 protocol reveals a dramatic burn-in degradation, more pronounced for thicker devices. Samples were also characterized using impedance spectroscopy (IS) at different degradation stages, and data were fitted to a three RC/RCPE circuit. The low frequency capacitance in the thickest samples suffers a strong increase with time, which suggests a significant growth in the mobile ion population. This increase in the ion density partially screens the electric field, which yields a reduction in the extracted current and, consequently, the efficiency. This paper has been validated with two-dimensional numerical simulations that corroborate (i) the decrease in the internal electric field in dark conditions in 650 nm devices, and (ii) the consequent reduction in the carrier drift and, therefore, of the effective current extraction and efficiency.


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 232 ◽  
Author(s):  
Alexey Maslakov ◽  
Natalia Shabanova ◽  
Dmitry Zamolodchikov ◽  
Vasili Volobuev ◽  
Gleb Kraev

Permafrost degradation caused by contemporary climate change significantly affects arctic regions. Active layer thickening combined with the thaw subsidence of ice-rich sediments leads to irreversible transformation of permafrost conditions and activation of exogenous processes, such as active layer detachment, thermokarst and thermal erosion. Climatic and permafrost models combined with a field monitoring dataset enable the provision of predicted estimations of the active layer and permafrost characteristics. In this paper, we present the projections of active layer thickness and thaw subsidence values for two Circumpolar Active Layer Monitoring (CALM) sites of Eastern Chukotka coastal plains. The calculated parameters were used for estimation of permafrost degradation rates in this region for the 21st century under various IPCC climate change scenarios. According to the studies, by the end of the century, the active layer will be 6–13% thicker than current values under the RCP (Representative Concentration Pathway) 2.6 climate scenario and 43–87% under RCP 8.5. This process will be accompanied by thaw subsidence with the rates of 0.4–3.7 cm∙a−1. Summarized surface level lowering will have reached up to 5 times more than current active layer thickness. Total permafrost table lowering by the end of the century will be from 150 to 310 cm; however, it will not lead to non-merging permafrost formation.


2020 ◽  
Vol 17 (16) ◽  
pp. 4261-4279
Author(s):  
Inge Grünberg ◽  
Evan J. Wilcox ◽  
Simon Zwieback ◽  
Philip Marsh ◽  
Julia Boike

Abstract. Connections between vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued climate warming and vegetation changes. The interplay of complex biophysical processes results in a highly heterogeneous soil temperature distribution on small spatial scales. Moreover, the link between topsoil temperature and active layer thickness remains poorly constrained. Sixty-eight temperature loggers were installed at 1–3 cm depth to record the distribution of topsoil temperatures at the Trail Valley Creek study site in the northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteristics and their relationship to vegetation, snow cover, and active layer thickness. The mean annual topsoil temperature varied between −3.7 and 0.1 ∘C within 0.5 km2. The observed variation can, to a large degree, be explained by variation in snow cover. Differences in snow depth are strongly related with vegetation type and show complex associations with late-summer thaw depth. While cold winter soil temperature is associated with deep active layers in the following summer for lichen and dwarf shrub tundra, we observed the opposite beneath tall shrubs and tussocks. In contrast to winter observations, summer topsoil temperature is similar below all vegetation types with an average summer topsoil temperature difference of less than 1 ∘C. Moreover, there is no significant relationship between summer soil temperature or cumulative positive degree days and active layer thickness. Altogether, our results demonstrate the high spatial variability of topsoil temperature and active layer thickness even within specific vegetation types. Given that vegetation type defines the direction of the relationship between topsoil temperature and active layer thickness in winter and summer, estimates of permafrost vulnerability based on remote sensing or model results will need to incorporate complex local feedback mechanisms of vegetation change and permafrost thaw.


2014 ◽  
Vol 8 (4) ◽  
pp. 4033-4074
Author(s):  
P. Pogliotti ◽  
M. Guglielmin ◽  
E. Cremonese ◽  
U. Morra di Cella ◽  
G. Filippa ◽  
...  

Abstract. The objective of this paper is to provide a first synthesis on the state and recent evolution of permafrost at the monitoring site of Cime Bianche (3100 m a.s.l.). The analysis is based on seven years of ground temperatures observations in two boreholes and seven surface points. The analysis aims to quantify the spatial and temporal variability of ground surface temperatures in relation to snow cover, the small scale spatial variability of the active layer thickness and the warming trends on deep permafrost temperatures. Results show that the heterogeneity of snow cover thickness, both in space and time, is the main factor controlling ground surface temperatures and leads to a mean range of spatial variability (2.5±0.15°C) which far exceeds the mean range of observed inter-annual variability (1.6±0.12°C). The active layer thickness measured in two boreholes 30 m apart, shows a mean difference of 2.03±0.15 m with the active layer of one borehole consistently lower. As revealed by temperature analysis and geophysical soundings, such a difference is mainly driven by the ice/water content in the sub-surface and not by the snow cover regimes. The analysis of deep temperature time series reveals that permafrost is warming. The detected linear trends are statistically significant starting from depth below 8 m, span the range 0.1–0.01°C year−1 and decrease exponentially with depth. Our findings are discussed in the context of the existing literature.


2002 ◽  
Vol 39 (11) ◽  
pp. 1657-1674 ◽  
Author(s):  
J Ross Mackay ◽  
C R Burn

Active-layer thickness, snow depth, minimum soil temperatures, near-surface ground ice, soil heave, and permafrost temperatures have been measured for over 20 years following the 1978 artificial drainage of Lake Illisarvik. Measurements of active-layer thickness and other variables have been made at 25-m intervals along the major and minor axes of the oval-shaped drained-lake bed. Permafrost aggradation commenced in the lake bottom during the first winter following drainage. Before the establishment of vegetation, there was little snow cover, minimum ground temperatures were low, and the active layer was relatively thin. However, both snow depth and minimum ground temperatures have risen where vegetation has grown, the active layer has thickened, and in response, the temperature in permafrost has gradually increased. In the lake bottom, the change in snow depth associated with vegetation growth has been the dominant control on variation in active-layer thickness and not summer weather conditions, which are well correlated with thaw depths along an active-layer course established in the adjacent tundra. Changes in elevation of the surface of the lake bed have been measured with respect to some 40 bench marks anchored in permafrost, and indicate vertical movements of the surface associated with frost heave, thaw subsidence, and the growth of aggradational ice. The ground ice content of near-surface permafrost determined by drilling is in close agreement with the measured uplift of the lake bed. The rate of growth of aggradational ice has been ~0.5 cm a–1 over 20 years.


2012 ◽  
Vol 6 (4) ◽  
pp. 2537-2574 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of permafrost active layer thickness (ALT) during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while ALT in North American watersheds showed decreases. An opposition of ALT variations implicated with climate and hydrological variables was most significant when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher Annual Thawing Index in the Mackenzie and Yukon Basins was offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing Annual Thawing Index together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. While it is widely believed that ALT will increase with global warming, this hypothesis may need modification because the ALT also shows responses to variations in snow depth and soil moisture that can over-ride the effect of air temperature. The dependence of the hydrological variables driven by the atmosphere further increases the uncertainty in future changes of the permafrost active layer.


2020 ◽  
Author(s):  
Inge Grünberg ◽  
Evan J. Wilcox ◽  
Simon Zwieback ◽  
Philip Marsh ◽  
Julia Boike

Abstract. Soil temperatures in permafrost regions are highly heterogeneous on small scales, in part due to variable snow and vegetation cover. Moreover, the temperature distribution that results from the interplay of complex biophysical processes remains poorly constrained. Sixty-eight temperature loggers were installed to record the distribution of topsoil temperatures at the Trail Valley Creek study site in the Northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteristics and their relationship to vegetation, snow cover and active layer thickness. The mean annual topsoil temperature varied between −3.7 °C and 0.1 °C within a 1.2 km distance, with an approximate average across the landscape of −2.3 °C in 2017 and −1.7 °C in 2018. The observed variation can, to a large degree, be explained by variation in snow cover. Differences in height between vegetation types cause spatially variable snow depth during winter, leading to spatially variable snow melt timing in spring, causing pronounced differences in topsoil mean temperature and temperature variability during those time periods. Summer topsoil temperatures were quite similar below most vegetation types, and not consistently related to active layer thickness at the end of August. The small-scale pattern of vegetation and its influence on snow cover height and snow melt governs the annual topsoil temperature in this permafrost-underlain landscape.


2015 ◽  
Vol 9 (2) ◽  
pp. 647-661 ◽  
Author(s):  
P. Pogliotti ◽  
M. Guglielmin ◽  
E. Cremonese ◽  
U. Morra di Cella ◽  
G. Filippa ◽  
...  

Abstract. The objective of this paper is to provide a first synthesis on the state and recent evolution of permafrost at the monitoring site of Cime Bianche (3100 m a.s.l.) on the Italian side of the Western Alps. The analysis is based on 7 years of ground temperature observations in two boreholes and seven surface points. The analysis aims to quantify the spatial and temporal variability of ground surface temperature in relation to snow cover, the small-scale spatial variability of the active layer thickness and current temperature trends in deep permafrost. Results show that the heterogeneity of snow cover thickness, both in space and time, is the main factor controlling ground surface temperatures and leads to a mean range of spatial variability (2.5 ± 0.1 °C) which far exceeds the mean range of observed inter-annual variability (1.6 ± 0.1 °C). The active layer thickness measured in two boreholes at a distance of 30 m shows a mean difference of 2.0 ± 0.1 m with the active layer of one borehole consistently deeper. As revealed by temperature analysis and geophysical soundings, such a difference is mainly driven by the ice/water content in the sub-surface and not by the snow cover regimes. The analysis of deep temperature time series reveals that permafrost is warming. The detected trends are statistically significant starting from a depth below 8 m with warming rates between 0.1 and 0.01 °C yr−1.


Sign in / Sign up

Export Citation Format

Share Document