Radio-frequency electrical properties of Green River oil shales

1980 ◽  
Vol 17 (9) ◽  
pp. 1315-1321 ◽  
Author(s):  
K. Rajeshwar ◽  
J. DuBow ◽  
R. Thapar

Laboratory measurements on the radio-frequency (10–103 MHz) electrical behavior of Green River oil shales were carried out using an automated frequency domain technique. Data are presented which show the variation of the relative dielectric constant (ε′), dielectric loss (ε″), and loss tangent (tan δ) with shale oil yield, frequency, temperature, and water content. The magnitude of these electrical parameters is shown to be sensitive to water content and possibly to varve geometry. The ε′ values tend to decrease and tan δ increases with increasing oil yield for shales subjected to prior thermal treatment at ~110 °C for 1–2 weeks. A systematic variation is observed in the degree of scatter and in the extent of correlation of tan δ and ε′ as a function of oil yield with each subsequent thermal treatment cycle. The manner in which variations in shale water content and (or) varve geometry influence the magnitude of the measured dielectric parameters is illustrated by duplicate measurements on samples with identical organic content. Such effects are shown to be important at low measurement frequencies (< 200 MHz). The temperature dependence of ε′ and ε″ is seen to be weak in the range 25–250 °C and appears to be largely dominated by temperature-induced changes in the water content of the shale.

1986 ◽  
Vol 23 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Maurice B. Dusseault ◽  
Matthias Loftsson ◽  
David Russell

Samples of eastern black shale (Kettle Point oil shales, Ontario) were subjected to extensive mineralogical and geomechanical tests. We prove that the mineralogy, as measured by the ratio of quartz to illite, controls strength and deformation properties, and the organic material plays no significant role. The reason is that increasing clay content dilutes the rigid quartz–quartz grain contacts that are responsible for the high strengths and stiff behavior. Tests of temperature effects on point load strength of another low organic content oil shale confirm that organic matter is not important to mechanical properties in matrix-supported shales. Key words: shale, mineralogy, Brazilian test, triaxial strength, organic content, slake durability, thermogravimetry.


2020 ◽  
Vol 39 (1) ◽  
pp. 54-62
Author(s):  
Hua Chen ◽  
Junjiang Chen ◽  
Weijun Wang ◽  
Huan Lin

AbstractThe multimode resonant cavity is the most common cavity. The material often shows on selective heating performance during the heating process due to the effect of microwave heating having a closely relationship with the electromagnetism parameters. This paper is based on finite difference time domain method (FDTD) to establish the electromagnetic-thermal model. The electromagnetic sensitivity property parameters of sodium chloride including relative dielectric constant, loss angle tangent and water content of sodium chloride is studied during the heating and drying process. The heating rate and the electric field distribution of sodium chloride, at the different water content, were simulated with the electromagnetic characteristic parameters changing. The results show that with the electromagnetic sensitivity property parameters varying, the electric field strength, heating rate and steady-state temperature of the heating material will all have a variety in the cavity. Some measures are proposed to improve the heating efficiency and ensure the stability of the microwave heating system in the industrial application.


1980 ◽  
Vol 20 (1) ◽  
pp. 44 ◽  
Author(s):  
A.C. Hutton ◽  
A.J. Kantsler ◽  
A.C. Cook ◽  
D.M. McKirdy

The Tertiary oil-shale deposits at Rundle in Queensland and of the Green River Formation in the western USA, together with Mesozoic deposits such as those at Julia Creek in Queensland, offer prospects of competitive recovery cost through the use of large-scale mining methods or the use of in situ processing.A framework for the classification of oil shales is proposed, based on the origin and properties of the organic matter. The organic matter in most Palaeozoic oil shales is dominantly large, discretely occurring algal bodies, referred to as alginite A. However, Tertiary oil shales of northeastern Australia are chiefly composed of numerous very thin laminae of organic matter cryptically-interbedded with mineral matter. Because the present maceral nomenclature does not adequately encompass the morphological and optical properties of most organic matter in oil shales, it is proposed to use the term alginite B for finely lamellar alginite, and the term lamosites (laminated oil shales) for oil shales which contain alginite B as their dominant organic constituent. In the Julia Creek oil shale the organic matter is very fine-grained and contains some alginite B but has a higher content of alginite A and accordingly is assigned to a suite of oil shales of mixed origin.Petrological and chemical techniques are both useful in identifying the nature and diversity of organic matter in oil shales and in assessing the environments in which they were formed. Such an understanding is necessary to develop exploration concepts for oil shales.


2010 ◽  
Vol 19 (7) ◽  
pp. 961 ◽  
Author(s):  
Laura L. Bourgeau-Chavez ◽  
Gordon C. Garwood ◽  
Kevin Riordan ◽  
Benjamin W. Koziol ◽  
James Slawski

Water content reflectometry is a method used by many commercial manufacturers of affordable sensors to electronically estimate soil moisture content. Field‐deployable and handheld water content reflectometry probes were used in a variety of organic soil‐profile types in Alaska. These probes were calibrated using 65 organic soil samples harvested from these burned and unburned, primarily moss‐dominated sites in the boreal forest. Probe output was compared with gravimetrically measured volumetric moisture content, to produce calibration algorithms for surface‐down‐inserted handheld probes in specific soil‐profile types, as well as field‐deployable horizontally inserted probes in specific organic soil horizons. General organic algorithms for each probe type were also developed. Calibrations are statistically compared to determine their suitability. The resulting calibrations showed good agreement with in situ validation and varied from the default mineral‐soil‐based calibrations by 20% or more. These results are of particular interest to researchers measuring soil moisture content with water content reflectometry probes in soils with high organic content.


Sign in / Sign up

Export Citation Format

Share Document