Thermal simulation of subsea saline permafrost

1986 ◽  
Vol 23 (12) ◽  
pp. 2039-2046 ◽  
Author(s):  
J. F. (Derick) Nixon

Thermal analyses of the response of offshore permafrost to emergence and submergence have traditionally employed simple closed-form solutions, where phase change is confined to a discrete freezing temperature. These have led to rather rapid rates of return to thermal equilibrium, which have proved difficult to explain in the light of recent deep temperature measurements in offshore permafrost profiles. This paper reviews the need for an appropriate unfrozen-water-content relationship for a saline frozen soil and describes some simulations of long-term thermal response in offshore permafrost using the author's geothermal simulator. Simulations of submergence assumed an initial permafrost thickness of 600 m and a mean soil-surface temperature of −9.0 °C. The salinity was assumed constant at 30‰. The initial-temperature profile was linear, varying between −9.0 °C and a freezing point of −1.8 °C at the bottom of ice-bonded permafrost. The temperature of the ground surface was assumed to have changed to −0.8 °C following submergence. After a period of 10 000 years, the predicted ground temperature at a depth of 300 m was −3.55 °C and was still rising. The equivalent temperature in a soil with a discrete freezing point would be 0.25 °C below the freezing point.Following permafrost submergence, for example, the rate of thaw in saline soils is somewhat faster than that predicted for discrete-freezing-point soils. However, more importantly, the rate at which the ground temperatures at depth rise in response to submergence is very much slower than that predicted by simpler closed-form solutions for freshwater soils. This means that for any given period since submergence, a cooler temperature profile would be predicted for a saline soil than for a soil with a discrete freezing point. This has far-reaching implications for geologists interpreting deep permafrost temperature records and for engineers involved with the design of structures in the arctic offshore.

1966 ◽  
Vol 3 (2) ◽  
pp. 53-60 ◽  
Author(s):  
Howard B Dillon ◽  
O B Andersland

A relationship between temperature and certain soil properties including specific surface area, activity ratio, and the expandable clay lattice, is presented for predicting the unfrozen water content of frozen soils. Data on experimental calorimetric determinations for ice content of two frozen clays and a frozen silty clay are given. Predicted unfrozen water contents are compared with experimental values for eleven soils with good agreement in all cases. Temperatures close to and above the freezing point depression of the soil are excluded. Knowledge of the unfrozen water content in frozen soils permits a more realistic approach to a variety of problems in frozen soil mechanics.


1984 ◽  
Vol 106 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J. M. Niedzwecki

The behavior of waves interacting with islands has gained renewed interest with the construction of exploratory drilling islands in the Arctic. This paper focuses upon the behavior of waves incident upon axisymmetric islands characterized by circular contours which vary with water depth. The island profiles of Arthur and Pocinki, which have closed form solutions, and a single tier conical island are examined. A new dimensionless formulation of Arthur’s ray theory and an extremely accurate numerical procedure to evaluate the ray integrals are presented. It is shown that each island profile leads to a distinct wave pattern about the island. These wave patterns are presented in figures which portray the wave capture and wave breaking about circular islands. It is intended that the methodology presented be used to initially assess trends and to evaluate the need for more refined analyses.


2020 ◽  
Vol 56 (12) ◽  
Author(s):  
Xiao Jin ◽  
Wen Yang ◽  
Xiaoqing Gao ◽  
Jian‐Qi Zhao ◽  
Zhenchao Li ◽  
...  

1995 ◽  
Vol 32 (2) ◽  
pp. 336-354 ◽  
Author(s):  
E.G. Hivon ◽  
D.C. Sego

This paper summarizes an extensive laboratory program undertaken to study the influence of soil type, temperature, and salinity on the strength of three different frozen soils under conditions of unconfined constant strain rate tests. Since the effects of temperature and salinity can be unified by studying the variation of unfrozen water content, measurements of unfrozen water at different temperatures were carried out using the time-domain reflectometry (TDR) method. The stress–strain behavior is influenced by the presence of fine particles in the soil, and an increase in temperature and salinity (unfrozen water content) causes a significant loss of strength. For each soil tested, a predictive model of its strength in terms of salinity and temperature (unfrozen water content) is presented. Key words : frozen soil, saline, unfrozen water, strength.


2012 ◽  
Vol 446-449 ◽  
pp. 2262-2266 ◽  
Author(s):  
Xiang Dong Hu ◽  
Bing Yi Ji

For numerically simulating the phase change of water in ground freezing process, a correct method is proposed in this paper, that the unfrozen water content in frozen soil is taken into account to calculate the enthalpy value at different temperatures. A calculation example of a cross-passage project in shield tunnel shows that the thickness and the average temperature of the frozen wall calculated by this method are very close to the in-situ monitored data. Based on this method, by comparison of the development rate of thickness and the average temperature of the frozen wall according to different design plans, the ground freezing scheme for the cross-passage is optimized for the shortest duration of freeze in agreement with the work standard. The study could enlighten the design for similar projects in the future.


2021 ◽  
Author(s):  
Go Iwahana ◽  
Zachary Cooper ◽  
Shelly Carpenter ◽  
Jody Deming ◽  
Hajo Eicken

<p>Cryopeg is a volume of permafrost with a significant amount of cryotic unfrozen water as a result of freezing-point depression by dissolved salt content. Cryopeg and saline permafrost have been reported for coastal areas of the Arctic seas, and their current distribution and future changes are a great concern for the warming Arctic, as the state of permafrost controls ground stability and the functioning of ice cellars in Arctic villages. To describe the distribution and segregation of cryopeg lenses, and to explore the origin and development of the cryopeg and associated brines found near Utqiaġvik, we conducted extensive sampling campaigns in the Barrow Permafrost Tunnel during May of 2017 and 2018.</p><p>We found two types of cryopeg brines based on their distinctive spatial occurrences: (1) intra-ice brine (IiB), entirely bounded by massive ice; and (2) intra-sediment brine (IsB), found in unfrozen sediment lenses within permafrost. While two examples of IiB have been reported previously, they were each found within ice layers below ice-sealed lakes in the McMurdo Dry Valleys of Antarctica, geological settings very different from ours. In our study, the IiBs were at roughly atmospheric pressure and situated in small pockets of ellipsoidal or more complex shape (dimensions of up to about 30 cm wide and 3 cm height) within 17–41 cm above the underlying sediment layer. Several individual IiB pockets may have been connected by porous ice of low permeability. Radiocarbon dating suggests that, at the earliest, the IiB was segregated about 11 ka BP from IsB-bearing cryopeg underneath. IsB lenses were interpreted as having developed through repeated evaporation and cryoconcentration of seawater in a lagoonal environment, then isolated at the latest when the surrounding sediment froze up and became covered by an upper sediment unit around 40 ka BP or earlier.</p><p>Considering the common characteristics among the cryopeg brines accessed from the tunnel and those found in brine-bearing marine sediment around Utqiaġvik, all occurrences of cryopeg brine in the region may have experienced analogous development despite potentially contrasting salinities and estimated ages. An increase in permafrost temperature invariably will result in expansion of cryopeg lenses and may change movement of liquids within the permafrost, which potentially become threats to Arctic coasts, infrastructure, and food security.</p>


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 103-116 ◽  
Author(s):  
R. M. Nagare ◽  
P. Bhattacharya ◽  
J. Khanna ◽  
R. A. Schincariol

Abstract. Heat and water movement in variably saturated freezing soils is a strongly coupled phenomenon. The coupling is a result of the effects of sub-zero temperature on soil water potential, heat carried by water moving under pressure gradients, and dependency of soil thermal and hydraulic properties on soil water content. This study presents a one-dimensional cellular automata (direct solving) model to simulate coupled heat and water transport with phase change in variably saturated soils. The model is based on first-order mass and energy conservation principles. The water and energy fluxes are calculated using first-order empirical forms of Buckingham–Darcy's law and Fourier's heat law respectively. The liquid–ice phase change is handled by integrating along an experimentally determined soil freezing curve (unfrozen water content and temperature relationship) obviating the use of the apparent heat capacity term. This approach highlights a further subtle form of coupling in which heat carried by water perturbs the water content–temperature equilibrium and exchange energy flux is used to maintain the equilibrium rather than affect the temperature change. The model is successfully tested against analytical and experimental solutions. Setting up a highly non-linear coupled soil physics problem with a physically based approach provides intuitive insights into an otherwise complex phenomenon.


2018 ◽  
Vol 54 (11) ◽  
pp. 9412-9431 ◽  
Author(s):  
Jiazuo Zhou ◽  
Changfu Wei ◽  
Yuanming Lai ◽  
Houzhen Wei ◽  
Huihui Tian

2010 ◽  
Vol 113-116 ◽  
pp. 1208-1211
Author(s):  
Xi Zhong Yuan ◽  
Yuan Lin Zhu ◽  
Ning Zhang

Contamination of unfrozen water in frozen soil could have adverse effects on surrounding infrastructure such as foundation instability or deterioration of trafficability. This paper describes the results of the experimental examination of the physical properties and mechanical behavior of Na2SO4 contaminated soil. Initial freezing temperature test, unfrozen water content test and unconfined compression tests were conducted on silts with 3 levels of concentrations (6, 18 and 42 ppt) of Na2SO4 and nonsaline cases at temperatures ranging between 0°C and -20°C. The test results indicate that the presence of salt significantly affect the physical properties and mechanical behavior of the frozen soil. Contamination of soils will cause depression of freezing temperature and degradation of permafrost. The freezing temperature depression ratio of Na2SO4 contaminated soil is 0.028°C/ppt. The unfrozen water content increases with an increase in salinity and temperature. The strength decreases with an increase in salinity, and the strength loss ratio of Na2SO4 contaminated soil is among 0.02-0.04MPa/ppt. Combined the effect of salinity and temperature on the strength, the decrease in strength with increase in unfrozen water content follows an exponential relationship. So estimation of salt concentration in the soil, and predictions of future increases of salt in the soil, is essential for design of buildings and roadways in permafrost.


Sign in / Sign up

Export Citation Format

Share Document