Rb–Sr and U–Pb ages of volcanism and granite emplacement in the Michipicoten belt—Wawa, Ontario

1982 ◽  
Vol 19 (8) ◽  
pp. 1608-1626 ◽  
Author(s):  
A. Turek ◽  
Patrick E. Smith ◽  
W. R. Van Schmus

The Michipicoten greenstone belt at Wawa, Ontario is typical of Archean volcanic belts in the Superior Province. The supracrustal rocks are divisible into lower, middle, and upper metavolcanic sequences, which are separated by iron formation and clastic metasedimentary rocks. These are intruded by granitic stocks and embayed by granitic batholiths.This study reports whole rock Rb–Sr and zircon U–Pb ages for the lower and upper metavolcanics, for the granitic rocks that are physically within the greenstone belt (internal granites), and for the granitic rocks that embay the greenstone belt (external granites). The apparent Rb–Sr ages for the lower metavolcanics are 2530 ± 90, 2285 ± 70, and 2680 ± 490 Ma. The U–Pb ages are 2749 ± 2 and 2744 ± 10 Ma. The internal granites give an Rb–Sr age of 2560 ± 270 Ma and a U–Pb age of 2737 ± 6 Ma. The external granite at Hawk Lake indicates an Rb–Sr age of 2550 ± 175 Ma and a U–Pb age of 2747 ± 7 Ma. It is possible that this unit contains elements older than 2812 Ma as it contains xenocrystic zircons. The upper volcanics give a U–Pb age of 2696 ± 2 Ma, which indicates that the belt evolved over a time period in excess of 53 Ma. The Rb–Sr ages are significantly younger than the U–Pb zircon ages and have very large uncertainties in age; hence it is unlikely that they have any stratigraphic significance. They probably reflect the Kenoran orogeny at about 2560 Ma. The 2285 ± 70 Ma Rb–Sr isochron age has an initial ratio of 0.7275 ± 0.0052, which is interpreted as a rotational isochron defining a younger post-Kenoran event in the area. The zircon ages appear to be correct chronostratigraphically. Furthermore, it appears that the granitic rocks are coeval and may also be cogenetic with the lower acid metavolcanic rocks.

1984 ◽  
Vol 21 (4) ◽  
pp. 457-464 ◽  
Author(s):  
A. Turek ◽  
Patrick E. Smith ◽  
W. R. Van Schmus

The Archean Michipicoten greenstone belt of the Superior Province in Ontario is made up of supracrustal rocks divided into lower, middle, and upper metavolcanic rocks with associated metasedimentary rocks. The belt has been intruded by granitic rocks and is also surrounded by granitic terranes. Based on U–Pb zircon geochronology it appears that volcanism in the area extended from at least 2749 to 2696 Ma, and plutonism and tectonic activity extended from at least 2888 to 2615 Ma. The various granitic (and also one gabbroic) plutons, both internal and external to the greenstone belt, were emplaced concomitantly with the three volcanic cycles as well as before and after the formation of the volcanic rocks. Zircon ages reported here, together with previously published ages, show that the area evolved in six major volcanic and plutonic events: (I) 2888 Ma—plutonism, (II) 2743 Ma—volcanism and plutonism, (III) 2717 Ma—volcanism and plutonism, (IV) 2696 Ma—volcanism and plutonism, (V) 2668 Ma—plutonism, and (VI) 2615 Ma—plutonism. The oldest rock dated at 2888 ± 2 Ma belongs to the external granitic terrane and may be basement to the supracrustal rocks.


1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.


1981 ◽  
Vol 18 (2) ◽  
pp. 323-329 ◽  
Author(s):  
A. Turek ◽  
T. E. Smith ◽  
C. H. Huang

The Gamitagama greenstone belt is situated to the south of the Archean Wawa belt of the Superior Province, and is about 50 km south of Wawa, Ontario. The Rb–Sr ages being reported here show that the metavolcanic and associated metasedimentary rocks are older than 2665 ± 45 Ma, which is a whole-rock isochron age of the pretectonic or syntectonic trondhjemitic plutons. The Gamitagama Lake complex, a calcalkalic differentiated and multiple diorite pluton, postdates the regional metamorphism and gives an age of 2645 ± 100 Ma. Potassic granitoid stocks, which are considered to be coeval with the Gamitagama Lake complex, define an isochron age of 2590 ± 80 Ma. The greenstone belt and associated intrusives are adjacent to the Southern batholith, a complex terrain of gneisses and migmatites, for which an isochron age of 2570 ± 90 Ma has been obtained. The radiometric ages reported here support the established stratigraphic sequence and prove that the rocks are Archean in age.


1987 ◽  
Vol 24 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Ronald Doig

The Churchill Province north of the Proterozoic Cape Smith volcanic fold belt of Quebec may be divided into two parts. The first is a broad antiform of migmatitic gneisses (Deception gneisses) extending north from the fold belt ~50 km to Sugluk Inlet. The second is a 20 km wide zone of high-grade metasedimentary rocks northwest of Sugluk Inlet. The Deception gneisses yield Rb–Sr isochron ages of 2600–2900 Ma and initial ratios of 0.701–0.703, showing that they are Archean basement to the Cape Smith Belt. The evidence that the basement rocks have been isoclinally refolded in the Proterozoic is clear at the contact with the fold belt. However, the gneisses also contain ubiquitous synclinal keels of metasiltstone with minor metapelite and marble that give isochron ages less than 2150 Ma. These ages, combined with low initial ratios of 0.7036, show that they are not part of the basement, as the average 87Sr/86Sr ratio for the basement rocks was about 0.718 at that time.The rocks west of Sugluk Inlet consist mainly of quartzo-feldspathic sediments, quartzites, para-amphibolites, marbles, and some pelite and iron formation. In contrast to the Proterozoic sediments in the Deception gneisses, these rocks yield dates of 3000–3200 Ma, with high initial ratios of 0.707–0.714. These initial ratios point to an age (or a provenance) much greater than that of the Archean Deception gneisses. The rocks of the Sugluk terrain are intruded by highly deformed sills of granitic rocks with ages of about 1830 Ma, demonstrating again the extent and severity of the Proterozoic overprint. The eastern margin of this possibly early Archean Sugluk block is a discontinuity in age, lithology, and geophysical character that could be a suture between two Archean cratons. It is not known if such a suturing event is of Archean age, or if it is related to the deformation of the Cape Smith Fold Belt.Models of evolution incorporating both the Cape Smith Belt and the Archean rocks to the north need to account for the internal structure of the fold belt, the continental affinity of many of the volcanic rocks, the continuity of basement around the eastern end of the belt, and the increase in metamorphism through the northern part of the belt into a broad area to the north. The Cape Smith volcanic rocks may have been extruded along a continental rift, parallel to a continental margin at Sugluk. Continental collison at Sugluk would have thrust the older and higher grade Sugluk rocks over the Deception gneisses, produced the broad Deception antiform, and displaced the Cape Smith rocks to the south in a series of north-dipping thrust slices.


2005 ◽  
Vol 42 (4) ◽  
pp. 599-633 ◽  
Author(s):  
D Barrie Clarke ◽  
Andrew S Henry ◽  
Mike A Hamilton

The Rottenstone Domain of the Trans-Hudson orogen is a 25-km-wide granitic–migmatitic belt lying between the La Ronge volcanic–plutonic island arc (1890–1830 Ma) to the southeast and the ensialic Wathaman Batholith (1855 Ma) to the northwest. The Rottenstone Domain consists of three lithotectonic belts parallel to the orogen: (i) southeast — gently folded migmatized quartzo-feldspathic metasedimentary and mafic metavolcanic rocks intruded by small concordant and discordant white tonalite–monzogranite bodies; (ii) central — intensely folded and migmatized metasedimentary rocks and minor metavolcanic rocks intruded by largely discordant, xenolith-rich, pink aplite-pegmatite monzogranite bodies; and (iii) northwest — steeply folded migmatized metasedimentary rocks cut by subvertical white tonalite–monzogranite sheets. Emplacement of granitoid rocks consists predominantly of contiguous, orogen-parallel, steeply dipping, syntectonic and post-tectonic sheets with prominent magmatic schlieren bands, overprinted by parallel solid-state deformation features. The white granitoid rocks have A/CNK (mol Al2O3/(mol CaO + Na2O + K2O)) = 1.14–1.22, K/Rb ≈ 500, ΣREE (sum of rare-earth elements) < 70 ppm, Eu/Eu* > 1, 87Sr/86Sri ≈ 0.7032, and εNdi ≈ –2. The pink monzogranites have A/CNK = 1.11–1.16, K/Rb ≈ 500, ΣREE > 90 ppm, Eu/Eu* < 1, 87Sr/86Sri ≈ 0.7031, and εNdi ≈ –2. The white granitoid rocks show a wider compositional range and more compositional scatter than the pink monzogranites, reflecting some combination of smaller volume melts, less homogenization, and less control by crystal–melt equilibria. All metavolcanic, metasedimentary, and granitic rocks in the Rottenstone Domain have the distinctive geochemical signatures of an arc environment. New sensitive high-resolution ion microprobe (SHRIMP) U–Pb geochronology on the Rottenstone granitoid rocks reveals complex growth histories for monazite and zircon, variably controlled by inheritance, magmatism, and high-grade metamorphism. Monazite ages for the granitoid bodies and migmatites cluster at ~1834 and ~1814 Ma, whereas zircon ages range from ~2480 Ma (rare cores) to ~1900–1830 Ma (cores and mantles), but also ~1818–1814 Ma for low Th/U recrystallized rims, overgrowths, and rare discrete euhedral prisms. These results demonstrate that at least some source material for the granitic magmas included earliest Paleoproterozoic crust (Sask Craton?), or its derived sediments, and that Rottenstone granitic magmatism postdated plutonism in the bounding La Ronge Arc and Wathaman Batholith. We estimate the age of terminal metamorphism in the Davin Lake area to be ~1815 Ma. Petrogenetically, the Rottenstone migmatites and granitoid rocks appear, for the most part, locally derived from their metasedimentary and metavolcanic host rocks, shed from the La Ronge Arc, Sask Craton, and possibly the Hearne Craton. The Rottenstone Domain was the least competent member in the overthrust stack and probably underwent a combination of fluid-present melting and fluid-absent decompression melting, resulting in largely syntectonic granitoid magmatism ~1835–1815 Ma, analogous to granite production in the High Himalayan gneiss belt.


1990 ◽  
Vol 27 (4) ◽  
pp. 582-589 ◽  
Author(s):  
S. L. Jackson ◽  
R. H. Sutcliffe

Published U–Pb geochronological, geological, and petrochemical data suggest that there are late Archean ensialic greenstone belts (GB) (Michipicoten GB and possibly the northern Abitibi GB), ensimatic greenstone belts (southern Abitibi GB and Batchawana GB), and possibly a transitional ensimatic–ensialic greenstone belt (Swayze GB) in the central Superior Province. This lateral crustal variability may preclude simple correlation of the Michipicoten GB and its substrata, as exposed in the Kapuskasing Uplift, with that of the southern Abitibi GB. Furthermore, this lateral variability may have determined the locus of the Kapuskasing Uplift. Therefore, although the Kapuskasing Uplift provides a useful general crustal model, alternative models of crustal structure and tectonics for the southern Abitibi GB warrant examination.Thrusting of a juvenile, ensimatic southern Abitibi GB over a terrane containing evolved crust is consistent with (i) the structural style of the southern Abitibi GB; (ii) juvenile southern Abitibi GB metavolcanic rocks intruded by rocks having an isotopically evolved, older component; and (iii) Proterozoic extension that preserved low-grade metavolcanic rocks within the down-dropped Cobalt Embayment, which is bounded by higher grade terranes to the east and west.


1965 ◽  
Vol 2 (5) ◽  
pp. 418-424 ◽  
Author(s):  
F. S. Grant ◽  
W. H. Gross ◽  
M. A. Chinnery

The Red Lake greenstone belt is Archaean in age (older than 2.5 billion years) and is located in the Superior province of the Canadian Precambrian Shield. It is a fairly typical greenstone belt, being composed of a complex assemblage of lavas, sediments, and intrusives. The belt is completely surrounded, and therefore is isolated from other greenstone belts, by granitic batholiths and acid paragneiss. Generally speaking, greenstones are more dense than the surrounding granitic rocks and they therefore give positive gravity effects, the amplitudes of which give some indication of their shape and overall thickness.At Red Lake, the greenstone belt is approximately 35 mi long by 18 mi wide. Gravity readings taken across the width of the belt indicate that the greenstones taper sharply in depth to a maximum thickness of approximately 25 000 ft. These results appear to confirm, as most geologists feel intuitively, that greenstone belts are basin-shaped and are underlain by granitic batholiths and gneiss.


1992 ◽  
Vol 29 (6) ◽  
pp. 1154-1165 ◽  
Author(s):  
A. Turek ◽  
R. P. Sage ◽  
W. R. Van Schmus

The Michipicoten greenstone belt in the Superior Province in Ontario developed over a period of approximately 240 Ma, between 2900 and 2660 Ma. The belt is made up of supracrustal rocks consisting of mafic to felsic metavolcanic and associated metasedimentary rocks intruded and embayed by granitoids of various ages. Generally, the external granitic terrane, a mosaic of plutons of various ages, is younger than the greenstone belt and equivalent in age to the plutons in the belt. Three major volcanic cycles have been recognized, and the older internal plutonism is coeval with the volcanism.This study reports 10 new U–Pb concordia ages that enhance the existing geochronological framework of the area. The 2889 Ma age determined for the Judith volcanic tuff documents the existence of the oldest volcanic cycle. This age is close to that of the Murray–Algoma porphyry, dated in this study at 2881 Ma, and similar to a previously published age of 2888 Ma for the Regnery granite within the same area. These three ages establish coeval felsic volcanism and plutonism within the oldest volcanic cycle 1.The new ages for the Jubilee volcanic centre are 2746 Ma (volcanic flow) and 2742 Ma (porphyry intrusion). These ages agree with previously published cycle 2 felsic volcanic ages of 2744 and 2749 Ma and hence establish coeval felsic volcanism and plutonism for this volcanic cycle. The Goudreau felsic volcanic terrane yields ages of 2729 Ma at Goudreau and 2741 Ma at Alden, which probably represent different stratigraphic positions within the same cycle.At McCormick Lake the felsic volcanic crystal tuff is 2701 Ma and belongs to cycle 3 volcanism. U–Pb ages have been determined for three plutons: 2677 Ma for the internal Dickenson Lake syenite, 2662 Ma for the internal Lund Lake granodiorite, and 2686 Ma for the external Dubreuilville granodiorite. These ages fit into an established period of granitoid plutonism in the area.


1975 ◽  
Vol 12 (7) ◽  
pp. 1175-1189 ◽  
Author(s):  
W. R. Van Schmus ◽  
K. D. Card ◽  
K. L. Harrower

The geology of the buried Precambrian basement under Manitoulin Island in northern Lake Huron, Ontario, has been re-evaluated on the basis of aeromagnetic data, well cuttings, core samples, and rubidium–strontium and uranium–lead geochronologic data on some of the subsurface samples. We conclude that the northern half of the island is underlain in part by Huronian metasedimentary rocks, but that these are absent from the southern part of the island, which is underlain by granitic, gneissic, and metavolcanic rocks. Granitic and gneissic rocks are also present under the northern half of the island.Geochronologic data show that rocks underlying major positive aeromagnetic anomalies are quartz-monzonitic composite plutons which are about 1500 ± 20 m.y. old. Surrounding metasedimentary. gneissic, and granitic rocks are at least 1700 m.y. old. No evidence was found for extrapolation of the pre-Huroman Archean basement beneath Manitoulin Island; if it is present it has been affected by younger metamorphic overprinting.The south west ward extension of the boundary zone between the Grenville Province and rocks to the west can he traced along the east end of Manitoulin Island on the basis of aeromagnetic data.


Sign in / Sign up

Export Citation Format

Share Document