Developing Baltic cod recruitment models. I. Resolving spatial and temporal dynamics of spawning stock and recruitment for cod, herring, and sprat

2001 ◽  
Vol 58 (8) ◽  
pp. 1516-1533 ◽  
Author(s):  
Friedrich W Köster ◽  
Christian Möllmann ◽  
Stefan Neuenfeldt ◽  
Michael A St John ◽  
Maris Plikshs ◽  
...  

The Baltic Sea comprises a heterogeneous oceanographic environment influencing the spatial and temporal potential for reproductive success of cod (Gadus morhua) and sprat (Sprattus sprattus) in the different spawning basins. Hence, to quantify stock and recruitment dynamics, it is necessary to resolve species-specific regional reproductive success in relation to size, structure, and distribution of the spawning stock. Furthermore, as species and fisheries interactions vary between areas, it is necessary to include these interactions on an area-specific basis. Therefore, area-disaggregated multispecies virtual population analyses (MSVPA) were performed for interacting species cod, herring (Clupea harengus), and sprat in the different subdivisions of the Central Baltic. The MSVPA runs revealed distinct spatial trends in population abundance, spawning biomass, recruitment, and predation-induced mortality. Results, when evaluated with respect to trends in population sizes from research surveys, were similar for the cod and sprat stocks but different for herring. Horizontal distributions from MSVPA runs and research surveys indicate that cod and sprat undergo migrations between basins during different life stages. This is an observation potentially influencing estimates for the different stock components but not affecting the overall stock sizes.

2012 ◽  
Vol 69 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Noel M. A. Holmgren ◽  
Niclas Norrström ◽  
Robert Aps ◽  
Sakari Kuikka

Abstract Holmgren, N. M. A., Norrström, N., Aps, R., and Kuikka, S. 2012. MSY-orientated management of Baltic Sea herring (Clupea harengus) during different ecosystem regimes. – ICES Journal of Marine Science, 69: 257–266. The Baltic Sea ecosystem has undergone dramatic changes, so-called ecosystem regime shifts, during the past four decades. Baltic Sea herring (Clupea harengus) spawning-stock biomass has declined to a third, and weight-at-age has halved as a result of food shortages and competition with sprat (Sprattus sprattus). The management objective for the herring stock is currently in transition from precautionary to maximum sustainable yield (MSY). The main basin Baltic Sea herring was modelled under the current ecosystem regime and the effect of a recovery of the cod (Gadus morhua) stock and the availability of planktonic food to levels found in the early 1980s analysed. A target of FMSY = 0.16 for herring, which should decline to FMSY = 0.10 with recovery of the cod stock, is proposed. An increase in the availability of planktonic food is estimated to more than double the yield at FMSY = 0.27, overriding the negative effects of cod predation should there be a simultaneous increase in both cod and availability of planktonic food. The estimated net increase in yield is 40% at FMSY = 0.20. Functions are presented to calculate FMSY and to estimate the expected yield depending on the abundance of cod and food availability. Retrospective application of the functions is indicative of overfishing of herring in the 1990s and early 2000s, and a net loss in yield, with a landing value of some €440 million.


Author(s):  
Rainer Froese ◽  
Eva Papaioannou ◽  
Marco Scotti

AbstractClimate change and deoxygenation are affecting fish stocks on a global scale, but disentangling the impacts of these stressors from the effects of overfishing is a challenge. This study was conducted to distinguish between climate change and mismanagement as possible causes for the drastic decline in spawning stock size and reproductive success in cod (Gadus morhua) and herring (Clupea harengus) in the Western Baltic Sea, when compared with the good or satisfactory status and reproductive success of the other commercial species in the area. Available data on water temperature, wind speed, and plankton bloom during the spawning season did not reveal conclusive correlations between years with good and bad reproductive success of cod or herring. Notably, the other commercial species in the area have very similar life history traits suggesting similar resilience against stress caused by climate change or fishing. The study concludes that severe, sustained overfishing plus inappropriate size selectivity of the main fishing gears have caused the decline in spawning stock biomass of cod and herring to levels that are known to have a high probability of impaired reproductive success. It is pointed out that allowed catches were regulated by management and adhered to by the fishers, meaning that unregulated fishing did not occur. Thus, mismanagement (quotas that were too high and gears that selected too small sizes) and not climate change appears to be the primary cause of the bad status of cod and herring in the Western Baltic Sea.


2003 ◽  
Vol 60 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Chris J Harvey ◽  
Sean P Cox ◽  
Timothy E Essington ◽  
Sture Hansson ◽  
James F Kitchell

Abstract Because fisheries operate within a complex array of species interactions, scientists increasingly recommend multispecies approaches to fisheries management. We created a food web model for the Baltic Sea proper, using the Ecopath with Ecosim software, to evaluate interactions between fisheries and the food web from 1974 to 2000. The model was based largely on values generated by multispecies virtual population analysis (MSVPA). Ecosim outputs closely reproduced MSVPA biomass estimates and catch data for sprat (Sprattus sprattus), herring (Clupea harengus), and cod (Gadus morhua), but only after making adjustments to cod recruitment, to vulnerability to predation of specific species, and to foraging times. Among the necessary adjustments were divergent trophic relationships between cod and clupeids: cod exhibited top-down control on sprat biomass, but had little influence on herring. Fishing, the chief source of mortality for cod and herring, and cod reproduction, as driven by oceanographic conditions as well as unexplained variability, were also key structuring forces. The model generated many hypotheses about relationships between key biota in the Baltic Sea food web and may ultimately provide a basis for estimating community responses to management actions.


2018 ◽  
Vol 133 ◽  
pp. 65-76 ◽  
Author(s):  
Roberta Valskienė ◽  
Janina Baršienė ◽  
Laura Butrimavičienė ◽  
Wlodzimierz Grygiel ◽  
Virmantas Stunžėnas ◽  
...  

2011 ◽  
Vol 68 (10) ◽  
pp. 2134-2144 ◽  
Author(s):  
Jaakko Mikkonen ◽  
Marja Keinänen ◽  
Michele Casini ◽  
Jukka Pönni ◽  
Pekka J. Vuorinen

Abstract Mikkonen, J., Keinänen, M., Casini, M., Pönni, J., and Vuorinen, P. J. 2011. Relationships between fish stock changes in the Baltic Sea and the M74 syndrome, a reproductive disorder of Atlantic salmon (Salmo salar). – ICES Journal of Marine Science, 68: 2134–2144. The M74 syndrome of Baltic salmon (Salmo salar), which appears as increased yolk-sac fry mortality (YSFM), impairs the reproduction of salmon stocks. Changes in the prey stocks of Baltic salmon in its two feeding areas, the southern Baltic Proper (BPr), where sprat (Sprattus sprattus) was the main prey species during the high incidence of M74, and the Bothnian Sea, where herring (Clupea harengus) is the dominant species, were analysed in relation to salmon growth and size and in relation to the incidence of M74. The high condition factor (CF > 1.05) of prespawning salmon predicted high YSFM. From the various stock factors of sprat and herring in the southern BPr, the biomass of sprat had the strongest positive relationships with the CF of prespawning salmon, and the total prey biomass with YSFM. It is concluded that the ample but unbalanced food resources for salmon in the BPr, primarily sprat, induce M74. By reducing the fishing pressure on cod (Gadus morhua) and by more effectively managing the sprat fishery in years when the cod stock is weak, the incidence of the M74 syndrome could be reduced and even prevented.


2000 ◽  
Vol 2 ◽  
pp. 120 ◽  
Author(s):  
Tore Schweder ◽  
Gro S Hagen ◽  
Einar Hatlebakk

To study the pattern of interaction between minke whale (Balaenoptera acutorostrata) abundance and the main fisheries in the Greater Barents Sea, a simulation experiment was carried out. The population model involves 4 species interconnected in a food web: cod (Gadus morhua), capelin (Mallotus villosus), herring (Clupea harengus) and minke whales. Minke whales are preying on cod, capelin andherring; cod are preying on (young) cod, capelin and herring; herring in the Barents Sea are preying on capelin; while capelin is a bottom prey in the model. The consumption function for minke whales is non-linear in available prey abundance, and is estimated from stomach content data and prey abundance data. The model is dynamic, with a time step of one month, and there are two areas: the BarentsSea and the Norwegian Sea. Minke whale abundances are kept on fixed levels, while recruitment in fish is stochastic.Cod and herring fisheries are managed by quotas targeting fixed fishing mortalities, while capelin is managed with a view to allow the cod to have enough food and leaving a sufficient spawning stock of capelin. The model is simulated over a period of 100 years for a number of fixed levels of minke whaleabundance, and simulated catches of cod, herring and capelin are recorded.The experiment showed interactions between whale abundance and fish catches to be mainly linear. For cod catches, both the direct effect of whales consuming cod, and the indirect effect due to whales competing with cod for food and otherwise altering the ecosystem, are linear and of equal importance. The net effect on the herring fishery is of the same magnitude as the net effect on the cod fishery, witheach extra whale reducing the catches of both species by some 5 tonnes. These conclusions are conditional on the model and its parameterisation.


2014 ◽  
Vol 71 (2) ◽  
pp. 326-336 ◽  
Author(s):  
Kasper Kristensen ◽  
Uffe Høgsbro Thygesen ◽  
Ken Haste Andersen ◽  
Jan E. Beyer

Spatial distributions of structured populations are usually estimated by fitting abundance surfaces for each stage and at each point of time separately, ignoring correlations that emerge from growth of individuals. Here, we present a statistical model that combines spatio-temporal correlations with simple stock dynamics to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod (Gadus morhua) population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering of individuals with similar size. The model estimates growth, mortality, and reproduction, after which any aspect of size structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: (i) tracking the spatial movements of a single cohort through time and (ii) predicting the risk of bycatch of undersized individuals. The method demonstrates that it is possible to combine stock assessment and spatio-temporal dynamics; however, this comes at a high computational cost. The model can be extended by increasing its ecological fidelity, although computational feasibility eventually becomes limiting.


2009 ◽  
Vol 66 (10) ◽  
pp. 1666-1681 ◽  
Author(s):  
Guðmundur J. Óskarsson ◽  
Christopher T. Taggart

Different fish stocks of the same species are defined by spatial and temporal differences in spawning, though spawning time can vary within and among stocks. Here we address spawning time variation in Icelandic summer-spawning (ISS) Atlantic herring ( Clupea harengus ). We do so by examining influencing factors that include variation in stock size structure, spawning experience (recruit vs. repeat spawners), spawning stock biomass (SSB), sea temperature, and combinations thereof. Our results, based on temporal variation in ovary weight (OW), relative ovary weight (RG), and maturation stage, across a time series of nearly 50 years and eight length classes of ISS herring, show that spawning occurs over a relatively invariant 30-day period defined by day-of-the-year. Logistic regression analyses and temporal development in OW and RG show that maximum spawning invariably occurs on day-of-the-year 200 ± 15 days, and seasonal variation in mesenteric fat content is physiologically consistent with the timing. We show that the smaller recruit spawners tend to spawn ~17 days later, on average, than the larger repeat spawners. Spawning occurs ~7 days later when SSB is greater than the long-term average, and spawning may be delayed by as much as 10 days during periods of colder than average ocean temperature.


Author(s):  
Diana Dziaduch

AbstractDiet composition of two commercial fish species, herring and cod, were studied in some regions (mainly Gda’nsk and Bornholm Basins, and the Polish coast) of the southern Baltic Sea in 2007 and 2008. Herring is the dominant zooplanktivorous species in the ecosystem of the Baltic Sea, but apart from mesoplanktonic organisms it also eats macroplanktonic and benthic species in considerable amount. The diet of cod consists of fish and crustaceans from pelagic, hyperbenthic and benthic habitats. The feeding preferences of fish indirectly reflect changes in the whole food chain in the Baltic Sea. This research focuses specifically on these invertebrate species, which are eliminated from the environment by most of the ichthyofauna of this region. The aim of this research is to examine the role of invertebrate organisms belonging to Crustacea in the diet of herring and adult cod to supply updated results about feeding of these fish as little data have been collected since the 1990s. The present study is a preliminary survey and results can not be considered conclusive. The restricted numbers of analyzed stomachs of fish and selected seasons of the year addressed in this paper are a starting point for further studies with a larger scope. In this study, 20 to 90% of herring had empty stomachs. Mesozooplankton dominated the diets of small and large herring. Mysidacea, which were historically important prey for herring, are now scarce and have been replaced by planktonic Amphipoda. In the case of cod, consumption of Mysidacea has never been as low as in this study. As for other invertebrate prey, the benthic isopod Saduria and Crangon shrimp achieved the highest amount by number and weight. These results show distinct changes in diet when compared to previous investigations and require verification at a larger spatial scale.


1996 ◽  
Vol 47 (2) ◽  
pp. 291 ◽  
Author(s):  
AJ Geffen

Cod and herring larvae were fed either rotifers or mixtures of rotifers, Artemia, and wild plankton to test the effects of feeding conditions on the development of population size structure. The population size structure at each sample date was characterized by the skewness, the standard deviation of mean length, the coefficient of variation of mean length and the Gini coefficient. The development of size structure through time was characterized by the spreading rate, which is the rate of change in the standard deviation of mean length over time. Larvae fed on a single, small-sized prey item (rotifers) grew slowly, and size variation increased slowly. Larvae fed on mixed prey species showed better growth; the population structure changed more rapidly, and often led to a skewed size distribution dominated by larger individuals. The presence of larger prey items resulted in disproportionate growth rates in the mixed-diet groups. The presence of these faster-growing individuals was the most important factor in determining the shape of the final size distributions and the development of the population size structure.


Sign in / Sign up

Export Citation Format

Share Document