Population genetic differentiation of sea lice (Lepeophtheirus salmonis) parasitic on Atlantic and Pacific salmonids: analyses of microsatellite DNA variation among wild and farmed hosts

2004 ◽  
Vol 61 (7) ◽  
pp. 1176-1190 ◽  
Author(s):  
C D Todd ◽  
A M Walker ◽  
M G Ritchie ◽  
J A Graves ◽  
A F Walker

The copepod Lepeophtheirus salmonis is ectoparasitic on Atlantic and Pacific wild salmonids. It is a major pest to Atlantic salmon (Salmo salar) aquaculture and may be implicated in recent declines of certain European wild salmonid stocks. Variation at six microsatellite loci was assessed among L. salmonis from wild and farmed salmonids in Scotland, wild sea-run brown trout (Salmo trutta) in Norway, and farmed Atlantic salmon in eastern Canada. An outgroup North Pacific sample was obtained from farmed Atlantic salmon in British Columbia. No significant differentiation was found between L. salmonis from the host species or among samples from throughout the North Atlantic. This is consistent with long-distance oceanic migration of wild hosts and larval interchange between farmed and wild host stocks being sufficient to prevent genetic divergence of L. salmonis throughout the North Atlantic. These results have important management implications for both wild stock conservation and aquaculture in that genetically, L. salmonis in the North Atlantic comprises a single population: there is no evidence of isolation of populations on farmed hosts from those on wild fish. Comparison between North Pacific and North Atlantic L. salmonis populations showed significant but low differentiation (FST = 0.06).

2020 ◽  
Vol 77 (11) ◽  
pp. 1846-1852
Author(s):  
David Minkoff ◽  
Nathan F. Putman ◽  
Jelle Atema ◽  
William R. Ardren

Many animals undertaking long-distance migrations use Earth’s magnetic field as a “map” to assess their position for orientation. This phenomenon been particularly well-studied in salmonids using “magnetic displacement” experiments, in which animals are presented with magnetic field conditions that are characteristic of other geographic locations. However, whether use of magnetic map cues differs among populations of salmon has not been investigated. Here we show that nonanadromous and anadromous populations of Atlantic salmon (Salmo salar) raised under the same conditions within their native range differ in their response to magnetic displacements in the North Atlantic. The directions adopted by anadromous salmon juveniles to each of the magnetic displacements would support their migration from the eastern US to western Greenland, had the fish actually been at those locations. In contrast, nonanadromous salmon did not appear to respond to the magnetic displacements. The findings are consistent with the hypothesis that the innate magnetic map of anadromous salmon is adapted to guide their marine migration.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
A Siah ◽  
R B Breyta ◽  
K I Warheit ◽  
N Gagne ◽  
M K Purcell ◽  
...  

Abstract Piscine orthoreovirus (PRV-1) is a segmented RNA virus, which is commonly found in salmonids in the Atlantic and Pacific Oceans. PRV-1 causes the heart and skeletal muscle inflammation disease in Atlantic salmon and is associated with several other disease conditions. Previous phylogenetic studies of genome segment 1 (S1) identified four main genogroups of PRV-1 (S1 genogroups I–IV). The goal of the present study was to use Bayesian phylogenetic inference to expand our understanding of the spatial, temporal, and host patterns of PRV-1 from the waters of the northeast Pacific. To that end, we determined the coding genome sequences of fourteen PRV-1 samples that were selected to improve our knowledge of genetic diversity across a broader temporal, geographic, and host range, including the first reported genome sequences from the northwest Atlantic (Eastern Canada). Nucleotide and amino acid sequences of the concatenated genomes and their individual segments revealed that established sequences from the northeast Pacific were monophyletic in all analyses. Bayesian inference phylogenetic trees of S1 sequences using BEAST and MrBayes also found that sequences from the northeast Pacific grouped separately from sequences from other areas. One PRV-1 sample (WCAN_BC17_AS_2017) from an escaped Atlantic salmon, collected in British Columbia but derived from Icelandic broodstock, grouped with other S1 sequences from Iceland. Our concatenated genome and S1 analysis demonstrated that PRV-1 from the northeast Pacific is genetically distinct but descended from PRV-1 from the North Atlantic. However, the analyses were inconclusive as to the timing and exact source of introduction into the northeast Pacific, either from eastern North America or from European waters of the North Atlantic. There was no evidence that PRV-1 was evolving differently between free-ranging Pacific Salmon and farmed Atlantic Salmon. The northeast Pacific PRV-1 sequences fall within genogroup II based on the classification of Garseth, Ekrem, and Biering (Garseth, A. H., Ekrem, T., and Biering, E. (2013) ‘Phylogenetic Evidence of Long Distance Dispersal and Transmission of Piscine Reovirus (PRV) between Farmed and Wild Atlantic Salmon’, PLoS One, 8: e82202.), which also includes North Atlantic sequences from Eastern Canada, Iceland, and Norway. The additional full-genome sequences herein strengthen our understanding of phylogeographical patterns related to the northeast Pacific, but a more balanced representation of full PRV-1 genomes from across its range, as well additional sequencing of archived samples, is still needed to better understand global relationships including potential transmission links among regions.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2017 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

Abstract. The explosive cyclogenesis of extra-tropical cyclones and the occurrence of atmospheric rivers are characteristic features of baroclinic atmospheres, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific Basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. This insight can be helpful for the predictability of high impact weather associated with explosive cyclones and atmospheric rivers.


Author(s):  
Peter S. Wells ◽  
Naoise Mac Sweeney

Iron Age Europe, once studied as a relatively closed, coherent continent, is being seen increasingly as a dynamic part of the much larger, interconnected world. Interactions, direct and indirect, with communities in Asia, Africa, and, by the end of the first millennium AD, North America, had significant effects on the peoples of Iron Age Europe. In the Near East and Egypt, and much later in the North Atlantic, the interactions can be linked directly to historically documented peoples and their rulers, while in temperate Europe the evidence is exclusively archaeological until the very end of the prehistoric Iron Age. The evidence attests to often long-distance interactions and their effects in regard to the movement of peoples, and the introduction into Europe of raw materials, crafted objects, styles, motifs, and cultural practices, as well as the ideas that accompanied them.


2018 ◽  
Vol 31 (6) ◽  
pp. 2533-2545 ◽  
Author(s):  
D. Whittleston ◽  
K. A. McColl ◽  
D. Entekhabi

The impact of future greenhouse gas forcing on the North Atlantic and North Pacific tropospheric jets remains uncertain. Opposing changes in the latitudinal temperature gradient—forced by amplified lower-atmospheric Arctic warming versus upper-atmospheric tropical warming—make robust predictions a challenge. Despite some models simulating more realistic jets than others, it remains the prevailing approach to treat each model as equally probable (i.e., democratic weighting). This study compares democratically weighted projections to an alternative Bayesian-weighting method based on the ability of models to simulate historical wintertime jet climatology. The novel Bayesian technique is developed to be broadly applicable to high-dimensional fields. Results show the Bayesian weighting can reduce systematic bias and suggest the wintertime jet response to greenhouse gas forcing is largely independent of this historical bias (i.e., not state dependent). A future strengthening and narrowing is seen in both winter jets, particularly at the upper levels. The widely reported poleward shift at the level of the eddy-driven jet does not appear statistically robust, particularly over the North Atlantic, indicating sensitivity to current model deficiencies.


Sign in / Sign up

Export Citation Format

Share Document