The Effect of Phosphorus Limitation on Algal Growth Rates: Evidence from Alkaline Phosphatase

1981 ◽  
Vol 38 (11) ◽  
pp. 1421-1427 ◽  
Author(s):  
Ralph E. H. Smith ◽  
Jaap Kalff

The inducible enzyme alkaline phosphatase (APA) was used to quantify phosphorus limitation of freshwater phytoplankton growth in situ. Natural phytoplankton communities from oligotrophic–eutrophic Lake Memphremagog were grown at phosphorus-limited rates of 0.06–0.93 per day in continuous, lake water cultures. APA varied inversely with phosphorus-limited growth rate and was little influenced by the community composition changes that occurred in culture. Compared to cultures, average in situ APA in Lake Memphremagog during the ice-free season was low, and suggested phosphorus-limited growth rates greater than 0.6 per day in even the most oligotrophic parts of the lake. Although algal abundance varies with total phosphorus among most north-temperate zone lakes, including Lake Memphremagog, our data show that average community growth rates are normally high and change relatively little over a fourfold range of total phosphorus concentration.Key words: alkaline phosphatase, phytoplankton, growth rate, phosphorus

2014 ◽  
Vol 11 (4) ◽  
pp. 6119-6149
Author(s):  
L. Peperzak ◽  
H. J. van der Woerd ◽  
K. R. Timmermans

Abstract. The oceans play a pivotal role in the global carbon cycle. Unfortunately, the daily production of organic carbon, the product of phytoplankton standing stock and growth rate cannot be measured globally by discrete oceanographic methods. Instead, optical proxies from Earth-orbiting satellites must be used. To test the accuracy of optically-derived proxies of phytoplankton physiology and growth rate, standard ex situ data from the wax and wane of a Phaeocystis bloom in laboratory mesocosms were compared with hyperspectral reflectance data. Chlorophyll biomass could be estimated accurately from reflectance using specific chlorophyll absorption algorithms. However, the conversion of chlorophyll (Chl) to carbon (C) was obscured by the observed increase in C : Chl under nutrient-limited growth. C : Chl was inversely correlated (r2 = 0.88) with Photosystem II quantum efficiency (Fv/Fm), the in situ fluorometric oceanographic proxy for growth rate. In addition, the optical proxy for growth rate, the quantum efficiency of fluorescence ϕ was linearly correlated to Fv/Fm (r2 = 0.84), but not – as by definition – by using total phytoplankton absorption, because during nutrient-limited growth the concentrations of non-fluorescent light-absorbing pigments increased. As a consequence, none of the three proxies (C : Chl, Fv/Fm, φ) was correlated to carbon or cellular phytoplankton growth rates. Therefore, it is concluded that although satellite derived estimates of chlorophyll biomass may be accurate, physiologically-induced non-linear shifts in growth rate proxies may obscure accurate phytoplankton growth rates and hence global carbon production estimates.


1998 ◽  
Vol 64 (9) ◽  
pp. 3346-3351 ◽  
Author(s):  
Brian J. Binder ◽  
Ying Chun Liu

ABSTRACT The relationship between growth rate and rRNA content in a marineSynechococcus strain was examined. A combination of flow cytometry and whole-cell hybridization with fluorescently labeled 16S rRNA-targeted oligonucleotide probes was used to measure the rRNA content of Synechococcus strain WH8101 cells grown at a range of light-limited growth rates. The sensitivity of this approach was sufficient for the analysis of rRNA even in very slowly growingSynechococcus cells (μ = 0.15 day−1). The relationship between growth rate and cellular rRNA content comprised three phases: (i) at low growth rates (<∼0.7 day−1), rRNA cell−1 remained approximately constant; (ii) at intermediate rates (∼0.7 − 1.6 day−1), rRNA cell−1 increased proportionally with growth rate; and (iii) at the highest, light-saturated rates (>∼1.6 day−1), rRNA cell−1 dropped abruptly. Total cellular RNA (as measured with the nucleic acid stain SYBR Green II) was well correlated with the probe-based measure of rRNA and varied in a similar manner with growth rate. Mean cell volume and rRNA concentration (amount of rRNA per cubic micrometer) were related to growth rate in a manner similar to rRNA cell−1, although the overall magnitude of change in both cases was reduced. These patterns are hypothesized to reflect an approximately linear increase in ribosome efficiency with increasing growth rate, which is consistent with the prevailing prokaryotic model at low growth rates. Taken together, these results support the notion that measurements of cellular rRNA content might be useful for estimating in situ growth rates in natural Synechococcus populations.


1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.


1994 ◽  
Vol 349 ◽  
Author(s):  
Chenyu Pan ◽  
John L. Margrave ◽  
Robert H. Hauge

ABSTRACTIn situ quantitative studies of the effects of substrate temperature, methane and chlorine flow rates on homoepitaxial diamond growth rates on (110) surfaces in a chlorine-activated diamond CVD reactor have been carried out using a Fizeau interferometer. The temperature dependence of diamond growth rates was found to display three distinct growth activation energies, ranging from 9±2 kcal/mol in the substrate temperature of 750-950°C, to 3.2±0.2 kcal/mol in the temperature range of 300-650°C, followed by 1.2±0.2 kcal/mol in the temperature range of 102-250°C. Atomic hydrogen is believed to be the dominant activating species in the highest temperature range, and atomic chlorine is believed to be the dominant species in the lower temperature regions. Studies of the methane flow effect on diamond growth rates revealed a linearity, indicating that the diamond growth rate was of the first order in methane flows. Diamond growth rates were also found to increase linearly with the chlorine flow. At high chlorine flow rates, however, an accelerated diamond growth rate was observed. Discussion is given to explain the observed results.


1983 ◽  
Vol 40 (12) ◽  
pp. 2251-2259 ◽  
Author(s):  
John W. M. Rudd ◽  
Michael A. Turner

An experiment was carried out in four 100-m3 in situ enclosures to determine the effect of primary production rate on mercury and selenium concentrations of biota and to test the possibility of ameliorating mercury pollution problems by increasing ecosystem primary productivity. Two enclosures were controls. Primary productivity in a third enclosure was increased fourfold by addition of NaNO3 and NaH2PO4. This stimulation was not sufficient to change pH although the growth rate of fish was enhanced. In this enclosure, mercury concentrations in pearl dace (Semotilus margarita) whole body and muscle samples increased two- and five-fold, respectively, exceeding the dilution of mercury by the enhanced growth rates. In the fourth enclosure, at the highest rate of nutrient addition, primary productivity was increased ninefold, pH was elevated from about 7.9 to 9.2, and the growth rate of fish was stimulated. In this case, the elevation of pH retarded the rate of mercury bioaccumulation in comparison with the enclosure of intermediate productivity. Based on these results, stimulation of primary productivity is not recommended as a mercury ameliorating procedure. Stimulation of primary productivity resulted in a general decrease in the concentration of selenium in the aquatic food chain probably resulting from dilution of selenium by enhanced growth rates of fish and other biota.


2003 ◽  
Vol 69 (7) ◽  
pp. 3798-3808 ◽  
Author(s):  
Brian J. Mailloux ◽  
Mark E. Fuller

ABSTRACT Laboratory and field-scale studies with stained cells were performed to monitor cell growth in groundwater systems. During cell division, the fluorescence intensity of the protein stain 5-(and 6-)-carboxyfluorescein diacetate succinimidyl ester (CFDA/SE) for each cell is halved, and the intensity can be tracked with a flow cytometer. Two strains of bacteria, Comamonas sp. strain DA001 and Acidovorax sp. strain OY-107, both isolated from a shallow aquifer, were utilized in this study. The change in the average generation or the average fluorescence intensity of the CFDA/SE-stained cells could be used to obtain estimates of doubling times. In microcosm experiments, the CFDA/SE-based doubling times were similar to the values calculated by total cell counting and were independent of cell concentration. Intact and repacked sediment core experiments with the same bacteria indicated that changes in groundwater chemistry were just as important as growth rates in determining planktonic cell concentrations. The growth rates within the sediment cores were similar to those calculated in microcosm experiments, and preferential transport of the daughter cells was not observed. The experiments indicated that the growth rates could be determined in systems with cell losses due to other phenomena, such as attachment to sediment or predation. Application of this growth rate estimation method to data from a field-scale bacterial transport experiment indicated that the doubling time was approximately 15 days, which is the first known direct determination of an in situ growth rate for bacteria in an aquifer.


2014 ◽  
Vol 11 (1) ◽  
pp. 1021-1051 ◽  
Author(s):  
A. C. Gerecht ◽  
L. Šupraha ◽  
B. Edvardsen ◽  
I. Probert ◽  
J. Henderiks

Abstract. Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon (POC) through photosynthesis and into particulate inorganic carbon (PIC) through calcification. As calcification produces a net release of CO2, the ratio of PIC / POC determines whether coccolithophores act as a source (PIC / POC > 1) or a sink (PIC / POC < 1) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and temperature stress on the physiology and PIC / POC ratios of two subspecies of Coccolithus pelagicus. This large and heavily calcified species (PIC / POC generally > 1.5) is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. A 5 °C temperature increase did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. The PIC / POC ratios did not differ between P-limited and nutrient-replete cultures, but at elevated temperature (from 10 to 15 °C) PIC / POC ratios decreased by 40–60%. Our results suggest that elevated temperature may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, resulting in PIC / POC ratios < 1 and favouring CO2-sequestration over release. Phosphorus limitation by itself is unlikely to cause changes in the PIC / POC ratio in this species.


2014 ◽  
Vol 11 (13) ◽  
pp. 3531-3545 ◽  
Author(s):  
A. C. Gerecht ◽  
L. Šupraha ◽  
B. Edvardsen ◽  
I. Probert ◽  
J. Henderiks

Abstract. Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon through photosynthesis (POC production) and into particulate inorganic carbon through calcification (PIC production). As calcification produces a net release of CO2, the ratio of PIC to POC production determines whether coccolithophores act as a source (high PIC / POC) or a sink (low PIC / POC) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and high temperature on the physiology and the PIC / POC ratio of two subspecies of Coccolithus pelagicus. This large and heavily calcified species is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. One of the subspecies was subjected to a 5 °C temperature increase from 10 °C to 15 °C, which did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. This temperature increase reduced the PIC / POC ratio by 40–60%, whereas the PIC / POC ratio did not differ between P-limited and nutrient-replete cultures when the subspecies were grown near their respective isolation temperature. Both P-limitation and elevated temperature significantly increased coccolith malformations. Our results suggest that a temperature increase may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, thus favouring CO2 sequestration over release. It seems unlikely that P-limitation by itself causes changes in the PIC / POC ratio in this species.


1991 ◽  
Vol 48 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Paul E. Sager ◽  
Sumner Richman

The functional interaction of phytoplankton and zooplankton, expressed in terms of the numerical difference between phytoplankton growth rates per day (in situ,14C method) and zooplankton grazing rates per day (in situ feeding experiments), was studied along the trophic gradient in Green Bay, Lake Michigan. Growth–grazing differences increased with trophic conditions, averaging 0.08 for the water column in the meso-oligotrophic northern bay and 0.56 in the eutrophic southern bay for the summers of 1986, 1987, and 1988. Eutrophic conditions produced dominance of growth by large-size cyanobacteria and low grazing rates by microcrustaceans Small and occasionally negative growth–grazing differences in the meso-oligotrophic region were associated with dominance of larger cladocerans and calanoid copepods and small algal species Phytoplankton growth rates in the northern bay averaged about 28% those of the eutrophic region. A unimodal phytoplankton growth response to increased grazing was observed in the northern bay, suggesting variation in positive (growth stimulating) and negative (grazing losses) effects of zooplankton on the phytoplankton.


Sign in / Sign up

Export Citation Format

Share Document