Towards a Better Definition of "Metamorphosis" in Coregonus sp.: Biochemical, Histological, and Physiological Data

1983 ◽  
Vol 40 (8) ◽  
pp. 1224-1232 ◽  
Author(s):  
H. Forstner ◽  
S. Hinterleitner ◽  
K. Mähr ◽  
W. Wieser

In Coregonus sp. the period between hatching and metamorphosis is characterized by an enhanced involvement of glycolysis in energy metabolism (as reflected by oxygen consumption and enzyme activities) and by the differentiation of the red and pink muscle fibers on which the increasing versatility of swimming performance of the larvae appears to depend. The larval weight of Coregonus sp. increased during the first 150 d of development at 10 °C from 6 to 2000 mg, but the average rate of oxygen consumption decreased only from 639 to 419 μg∙g−1∙h−1. Four types of muscle fibers were distinguished, each with a distinct developmental pattern: red and pink fibers first become observable 25–34 d after hatching, the latter growing more slowly than the former; before this, only white muscles and a characteristic layer of small diameter red fibers are present in Coregonus sp. The activities of the two oxidative enzymes, citrate synthase and cytochrome oxidase, and the activity of hexokinase, increased directly after hatching, reaching a peak within 20–47 d. On the other hand, the three glycolytic enzymes, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase, remained at a constantly low level from hatching to day 40, whereafter their rates of activity began to increase rapidly.

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Amanda I Banet ◽  
Stephen J Healy ◽  
Erika J Eliason ◽  
Edward A Roualdes ◽  
David A Patterson ◽  
...  

Abstract Pacific salmon routinely encounter stressors during their upriver spawning migration, which have the potential to influence offspring through hormonally-mediated maternal effects. To disentangle genetic vs. hormonal effects on offspring swimming performance, we collected gametes from three species of Pacific salmon (Chinook, pink and sockeye) at the end of migration and exposed a subset of eggs from each female to cortisol baths to simulate high levels of maternal stress. Fertilised eggs were reared to fry and put through a series of aerobic swim trials. Results show that exposure to cortisol early in development reduces maximum oxygen consumption while swimming, and decreases aerobic scope in all three species. Resting oxygen consumption did not differ between cortisol and control treatment groups. We also examined several metrics that could influence aerobic performance, and found no differences between treatment groups in haematocrit%, haemoglobin concentration, heart mass, citrate synthase activity or lactate dehydrogenase activity. Though it was not the focus of this study, an interesting discovery was that pink salmon had a higher MO2max and aerobic scope relative to the other species, which was supported by a greater haematocrit, haemoglobin, a larger heart and higher CS activity. Some management and conservation practices for Pacific salmon focus efforts primarily on facilitating adult spawning. However, if deleterious effects of maternal stress acquired prior to spawning persist into the next generation, consideration will need to be given to sub-lethal effects that could be imparted onto offspring from maternal stress.


1971 ◽  
Vol 55 (2) ◽  
pp. 521-540 ◽  
Author(s):  
P. W. WEBB

1. The oxygen consumption of rainbow trout was measured at a variety of subfatigue swimming speeds, at a temperature of 15 %C. Five groups of fish were used, a control group and four groups with extra drag loads attached to the body. 2. The logarithm of oxygen consumption was linearly related to swimming speed in all five groups, the slope of the relationship increasing with the size of the extra drag load. The mean standard rate of oxygen consumption was 72.5 mg O2/kg wet weight/h. The active rate of oxygen consumption was highest for the control group (628 mg O2/kg/h) and fell with increasing size of the attached drag load. The active rate for the control group was high in comparison with other salmonid fish, and in comparison with the value expected for the fish. This was not a result of the extra drag loads in the other groups. No explanation for this high value can be found. 3. The critical swimming speed for a 60 min test period was 58.1 cm/sec (2.0 body lengths/sec) for the control group. The values for the critical swimming speeds were slightly higher than those measured for the same species in a previous paper (Webb, 1971). The difference between the two sets of critical swimming speeds is attributed to seasonal changes in swimming performance. 4. The aerobic efficiency was found to reach values of 14.5-15.5% based on the energy released by aerobic metabolism in comparison with the calculated required thrust. 5. The anaerobic contribution to the total energy budget in increasing-velocity tests is considered to be small, and can be neglected. 6. It is concluded that the efficiency of the muscle system in cruising will be approximately 17-20% over the upper 80% of the cruising-speed range, while the caudal propeller efficiency will increase from about 15-75 % over the same range. 7. Consideration of the efficiency values for the caudal propeller calculated here, and those predicted by Lighthill's (1969) model of fish propulsion, suggest that the efficiency of the propeller system will reach an optimum value at the maximum cruising speeds of most fish, and will remain close to this value at spring speeds.


2012 ◽  
Vol 303 (1) ◽  
pp. H47-H56 ◽  
Author(s):  
Aleksander S. Golub ◽  
Roland N. Pittman

The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate ( P 50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P 50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.


1984 ◽  
Vol 32 (11) ◽  
pp. 1211-1216 ◽  
Author(s):  
P M Nemeth ◽  
O H Lowry

An attempt was made to determine the relationship of myoglobin content to specific fiber types in human muscle. Biopsies were obtained from biceps brachii, vastus lateralis, and gastrocnemius muscles of untrained subjects and from the vastus lateralis muscle of a highly trained athlete at peak training and at intervals of no training (detraining). Individual muscle fibers were assayed, by quantitative microanalytical methods, for myoglobin, lactate dehydrogenase, malate dehydrogenase, citrate synthase, beta-hydroxyacyl-coenzyme A dehydrogenase, and adenylokinase activities all on the same fiber. The enzyme levels were used to classify the fibers into type I or II. The results show that the content of myoglobin in human muscle does not differ greatly between fiber types in contrast to other species. The type II fibers contained, on the average, at least two-thirds as much myoglobin as type I fibers. The concentration of myoglobin did not change in either fiber type during detraining (84 days), despite marked changes in lactate dehydrogenase, adenylokinase and the three oxidative enzymes.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1430
Author(s):  
Feifei He ◽  
Xiaogang Wang ◽  
Yun Li ◽  
Yiqun Hou ◽  
Qiubao Zou ◽  
...  

Anaerobic metabolism begins before fish reach their critical swimming speed. Anaerobic metabolism affects the swimming ability of fish, which is not conducive to their upward tracking. The initiation of anaerobic metabolism therefore provides a better predictor of flow barriers than critical swimming speed. To estimate the anaerobic element of metabolism for swimming fish, the respiratory metabolism and swimming performance of adult crucian carp (Carassius auratus, mass = 260.10 ± 7.93, body length = 19.32 ± 0.24) were tested in a closed tank at 20 ± 1 °C. The swimming behavior and rate of oxygen consumption of these carp were recorded at various swimming speeds. Results indicate (1) The critical swimming speed of the crucian carp was 0.85 ± 0.032 m/s (4.40 ± 0.16 BL/s). (2) When a power function was fitted to the data, oxygen consumption, as a function of swimming speed, was determined to be AMR = 131.24 + 461.26Us1.27 (R2 = 0.948, p < 0.001) and the power value (1.27) of Us indicated high swimming efficiency. (3) Increased swimming speed led to increases in the tail beat frequency. (4) Swimming costs were calculated via rate of oxygen consumption and hydrodynamic modeling. Then, the drag coefficient of the crucian carp during swimming was calibrated (0.126–0.140), and the velocity at which anaerobic metabolism was initiated was estimated (0.52 m/s), via the new method described herein. This study adds to our understanding of the metabolic patterns of fish at different swimming speeds.


2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Patricia M Ramos ◽  
Chengcheng Li ◽  
Mauricio A Elzo ◽  
Stephanie E Wohlgemuth ◽  
Tracy L Scheffler

Abstract Functional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo. We measured mt oxygen consumption rate (OCR) in fresh-permeabilized muscle fibers from Longissimus lumborum (LL) at 2 temperatures (38.5 and 40.0 °C) and determined citrate synthase (CS) activity and expression of several mt proteins. The main effects of breed, temperature, and their interaction were tested for mt respiration, and breed effect was tested for CS activity and protein expression. Breed, but not temperature (P &gt; 0.40), influenced mt OCR (per tissue weight), with Brahman exhibiting greater complex I+II-mediated oxidative phosphorylation capacity (P = 0.05). Complex I- and complex II-mediated OCR also tended to be greater in Brahman (P = 0.07 and P = 0.09, respectively). Activity of CS was higher in LL from Brahman compared to Angus (P = 0.05). Expression of specific mt proteins did not differ between breeds, except for higher expression of adenosine triphosphate (ATP) synthase subunit 5 alpha in Brahman muscle (P = 0.04). Coupling control ratio differed between breeds (P = 0.05), revealing greater coupling between oxygen consumption and phosphorylation in Brahman. Our data demonstrate that both Angus and Brahman mt retained functional capacity and integrity 1-h postmortem; greater oxidative phosphorylation capacity and coupling in Brahman mt could be related to heat tolerance and impact early postmortem metabolism.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruaridh A. Clark ◽  
Malcolm Macdonald

AbstractContact networks provide insights on disease spread due to the duration of close proximity interactions. For systems governed by consensus dynamics, network structure is key to optimising the spread of information. For disease spread over contact networks, the structure would be expected to be similarly influential. However, metrics that are essentially agnostic to the network’s structure, such as weighted degree (strength) centrality and its variants, perform near-optimally in selecting effective spreaders. These degree-based metrics outperform eigenvector centrality, despite disease spread over a network being a random walk process. This paper improves eigenvector-based spreader selection by introducing the non-linear relationship between contact time and the probability of disease transmission into the assessment of network dynamics. This approximation of disease spread dynamics is achieved by altering the Laplacian matrix, which in turn highlights why nodes with a high degree are such influential disease spreaders. From this approach, a trichotomy emerges on the definition of an effective spreader where, for susceptible-infected simulations, eigenvector-based selections can either optimise the initial rate of infection, the average rate of infection, or produce the fastest time to full infection of the network. Simulated and real-world human contact networks are examined, with insights also drawn on the effective adaptation of ant colony contact networks to reduce pathogen spread and protect the queen ant.


In a comparison of muscles poisoned with mono-iodo-acetic acid (IAA) in the presence and in the absence of oxygen respectively, Lundsgaard (1930) found:- (1) That the spontaneous breakdown of phosphagen in poisoned resting muscle is much more rapid under anaerobic conditions. (2) That the onset of the characteristic contracture produced by IAA is accompanied always by an increase in the rate of oxygen consumption.


1996 ◽  
Vol 271 (3) ◽  
pp. F717-F722
Author(s):  
G. Bajaj ◽  
M. Baum

Intracellular cystine loading by use of cystine dimethyl ester (CDME) results in a generalized inhibition in proximal tubule transport due, in part, to a decrease in intracellular ATP. The present study examined the importance of phosphate and metabolic substrates in the proximal tubule dysfunction produced by cystine loading. Proximal tubule intracellular phosphorus was 1.8 +/- 0.1 in control tubules and 1.1 +/- 0.1 nmol/mg protein in proximal tubules incubated in vitro with CDME P < 0.001). Infusion of sodium phosphate in rabbits and subsequent incubation of proximal tubules with a high-phosphate medium attenuated the decrease in proximal tubule respiration and prevented the decrease in intracellular ATP with cystine loading. Tricarboxylic acid cycle intermediates have been shown to preserve oxidative metabolism in phosphate-depleted proximal tubules. In proximal tubules incubated with either 1 mM valerate or butyrate, there was a 42 and 34% reduction (both P < 0.05) in the rate of oxygen consumption with cystine loading. However, tubules incubated with 1 mM succinate or citrate had only a 13 and 14% P = NS) reduction in the rate of oxygen consumption, respectively. These data are consistent with a limitation of intracellular phosphate in the pathogenesis of the proximal tubule dysfunction with cystine loading.


1995 ◽  
Vol 41 (4-5) ◽  
pp. 372-377 ◽  
Author(s):  
João P. S. Cabral

Pseudomonas syringae cells starved in buffer released orcinol-reactive molecules and materials that absorbed ultraviolet light. The number of cells culturable in nutrient medium decreased more rapidly than the number of intact particles determined by microscopy. The results suggested that starvation resulted in the lysis of an increasing number of cells, and that a fraction of the intact particles were not culturable. Starvation also resulted in a decrease in the rate of oxygen consumption with acetate, glycerol, and succinate, but at different levels. Whereas the respiration of acetate and glycerol decreased concomitantly with culturability, the respiration of succinate decreased to levels similar to the concentration of intact cells, suggesting that all intact particles respired the succinate, but only the culturable cells respired the acetate and glycerol. The results suggest that measuring the activity of the electron-transport system can overestimate the viability of starved bacterial cells, and that complex metabolic activities such as the respiration of acetate and glycerol are probably better suited for the evaluation of this parameter.Key words: Pseudomonas syringae, starvation, culturability, viability, respiration.


Sign in / Sign up

Export Citation Format

Share Document