Fish Production in Warmwater Streams in Poland and Ontario

1985 ◽  
Vol 42 (6) ◽  
pp. 1211-1215 ◽  
Author(s):  
Robin Mahon ◽  
Eugene K. Balon

Density (numbers per hectare), biomass (kilograms per hectare), and annual production (kilograms per hectare per year) of entire stream fish taxocenes were significantly higher at localities in Ontario (n = 11) than in Poland (n = 14). The production/biomass ratio and the mean size of individuals did not differ significantly between the two sets of localities. The average stream size at the localities studied in Poland was significantly smaller than in Ontario. Production and biomass in Poland showed a significant negative association with stream size, whereas in Ontario these relationships were not significant; therefore, the differences in these variables between Poland and Ontario may even be underestimated. Differences in fluvial fish taxocene richness might explain the observed differences in production if the streams in Poland are less saturated than those in Ontario. However, the possibility of more basic differences in productivity at lower trophic levels cannot be ruled out.

1971 ◽  
Vol 28 (10) ◽  
pp. 1573-1581 ◽  
Author(s):  
K. Radway Allen

A series of mathematical models of cohorts in animal populations representing various combinations of several different simple growth and mortality functions is examined to investigate the ratio between mean biomass and production over unit time, and to compare this ratio with the mean age and mean life span of the animals in the cohort.For any cohort, the ratio of production per unit time to mean biomass is equal to the ratio of total production by the cohort to its total biomass integral by time. For populations consisting of a number of simultaneous, successive, or overlapping cohorts, the ratio of production per unit time to mean biomass is equal to the mean of the ratios for the individual cohorts weighted by the mean biomasses of the cohorts.If the cohorts are identical, the population ratio is the same as the cohort ratio and problems arising from the presence of more than one cohort may be ignored. Formulations for the total production per cohort, biomass integral, and, where they can be simplified, their ratios, are given.Comparison with mean age and mean life span shows that for constant exponential mortality, mean age and mean life span are both equal to the reciprocal of the production–biomass ratio. For other mortality functions, if growth in weight is linear, the production–biomass ratio equals the reciprocal of the mean age. For other models there is no simple relation. In general, mean age appears a better approximation than mean life span to the reciprocal of the production–biomass ratio.These methods are applied, as an example, to Antarctic krill, using a model having linear growth in length and four periods with different exponential mortality rates. For this model, annual production is 1.8 times the mean biomass so that assumption of equality leads to an underestimate of production. Mean age and mean life span are 0.21 and 0.037 years respectively. Thus, use of either of these as an approximation, and particularly mean life span, leads to severe overestimation of annual production.


1994 ◽  
Vol 59 (6) ◽  
pp. 1301-1304
Author(s):  
Jaroslav Nývlt ◽  
Stanislav Žáček

Lead iodide was precipitated by a procedure in which an aqueous solution of potassium iodide at a concentration of 0.03, 0.10 or 0.20 mol l-1 was stirred while an aqueous solution of lead nitrate at one-half concentration was added at a constant rate. The mean size of the PbI2 crystals was determined by evaluating the particle size distribution, which was measured sedimentometrically. The dependence of the mean crystal size on the duration of the experiment exhibited a minimum for any of the concentrations applied. The reason for this is discussed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ali Pouryousef ◽  
Erfan Eslami ◽  
Sepehr Shahriarirad ◽  
Sina Zoghi ◽  
Mehdi Emami ◽  
...  

Abstract Objectives The current study aimed to evaluate the effects of Ficus carica latex on the treatment of cutaneous leishmaniasis (CL), induced by Leishmania major. A 5% topical gel with F. carica latex was prepared. BALB/c mice were infected by inoculation of amastigotes form of L. major. Thirty BALB/c mice were divided into five groups, where the first group was treated daily, the second group twice per day, and the third group every other day with the 5% topical gel, for 3 weeks. The sizes of the lesions were measured before and during the course of treatment. Results Although the mean size of lesions in the mice group treated with the 5% F. carica gel, especially in the group receiving daily treatment, was less than the mean size of the lesions in the control group, yet, the differences was not statistically significant (p > 0.05). The findings of the current study demonstrated that the 5% F. carica latex with a 3-week course of treatment had no considerable effect in recovery or control of CL induced by L. major in the murine model. Using higher concentration of F. carica latex and with longer treatment lengths may increase its efficacy in the treatment of CL.


Author(s):  
Xiao Dai ◽  
Mark J Ducey ◽  
Haozhou Wang ◽  
Ting-Ru Yang ◽  
Yung-Han Hsu ◽  
...  

Abstract Efficient subsampling designs reduce forest inventory costs by focusing sampling efforts on more variable forest attributes. Sector subsampling is an efficient and accurate alternative to big basal area factor (big BAF) sampling to estimate the mean basal area to biomass ratio. In this study, we apply sector subsampling of spherical images to estimate aboveground biomass and compare our image-based estimates with field data collected from three early spacing trials on western Newfoundland Island in eastern Canada. The results show that sector subsampling of spherical images produced increased sampling errors of 0.3–3.4 per cent with only about 60 trees measured across 30 spherical images compared with about 4000 trees measured in the field. Photo-derived basal area was underestimated because of occluded trees; however, we implemented an additional level of subsampling, collecting field-based basal area counts, to correct for bias due to occluded trees. We applied Bruce’s formula for standard error estimation to our three-level hierarchical subsampling scheme and showed that Bruce’s formula is generalizable to any dimension of hierarchical subsampling. Spherical images are easily and quickly captured in the field using a consumer-grade 360° camera and sector subsampling, including all individual tree measurements, were obtained using a custom-developed python software package. The system is an efficient and accurate photo-based alternative to field-based big BAF subsampling.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 413
Author(s):  
Justin D. Liefer ◽  
Mindy L. Richlen ◽  
Tyler B. Smith ◽  
Jennifer L. DeBose ◽  
Yixiao Xu ◽  
...  

Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (Feb–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 653
Author(s):  
Shereef Bankole ◽  
Dorrik Stow ◽  
Zeinab Smillie ◽  
Jim Buckman ◽  
Helen Lever

Distinguishing among deep-water sedimentary facies has been a difficult task. This is possibly due to the process continuum in deep water, in which sediments occur in complex associations. The lack of definite sedimentological features among the different facies between hemipelagites and contourites presented a great challenge. In this study, we present detailed mudrock characteristics of the three main deep-water facies based on sedimentological characteristics, laser diffraction granulometry, high-resolution, large area scanning electron microscopy (SEM), and the synchrotron X-ray diffraction technique. Our results show that the deep-water microstructure is mainly process controlled, and that the controlling factor on their grain size is much more complex than previously envisaged. Retarding current velocity, as well as the lower carrying capacity of the current, has an impact on the mean size and sorting for the contourite and turbidite facies, whereas hemipelagite grain size is impacted by the natural heterogeneity of the system caused by bioturbation. Based on the microfabric analysis, there is a disparate pattern observed among the sedimentary facies; turbidites are generally bedding parallel due to strong currents resulting in shear flow, contourites are random to semi-random as they are impacted by a weak current, while hemipelagites are random to oblique since they are impacted by bioturbation.


2020 ◽  
pp. 112067212097604
Author(s):  
Reem R Al Huthail ◽  
Yasser H Al-Faky

Objective: To evaluate the effect of chronicity on the size of the ostium after external dacryocystorhinostomy (DCR) with intubation. Methods: Design: A retrospective chart review of patients who underwent external DCR with intubation over 10 years from January 2003 at a tertiary hospital. All patients were recruited and examined with rigid nasal endoscope. Results: A total number of 66 (85 eyes) patients were included. The mean age at the time of evaluation was 53.1 years with gender distribution of 54 females (81.8 %). The mean duration ±SD between the date of surgery and the date of evaluation was 33.2 ± 33.6 (6–118 months). Our study showed an overall anatomical and functional success of 98.8% and 95.3%, respectively. The mean size of the ostium (±SD) was 23.0 (±15.7) mm2 (ranging from 1 to 80.4 mm2). The size of the ostium was not a significant factor for failure ( p = 0.907). No statistically significant correlation was found between the long-term duration after surgery and the size of the ostium ( R: 0.025, p = 0.157). Conclusions: Nasal endoscopy after DCR is valuable in evaluating the ostium with no observed potential correlation between the long-term follow-up after surgery and the size of the ostium.


1971 ◽  
Vol 1 (4) ◽  
pp. 262-266 ◽  
Author(s):  
D. F. W. Pollard

Biomass (stems and branches) increased from 17 000 kg h−1 in the 4th year to 34 000 kg h−1 in the 7th year of development of an aspen sucker stand. The bulk of the biomass was distributed in the middle and upper diameter classes of shoots; net annual increases only occurred in the upper classes. About 80% of shoots dying in the 3 years of study were less than 2 cm dbh; the biomass lost in these amounted to 200 kg h−1 or less each year. The remaining 20% mortality occurred in the 7th year among shoots 2–5 cm dbh infected with Diplodiatumefaciens. Biomass lost in these larger shoots amounted to 4 900 kg h−1; this was close to the discrepancy between net production (stems and branches) in the 7th year (2600 kg h−1 per annum) and net production in the 5th and 6th years (about 7000 kg h−1 per annum.) Results suggest that although high rates of net annual production are obtainable in short rotations, the mean annual production is strongly influenced by disease because of insufficient time for enhanced growth of survivors.


1989 ◽  
Vol 157 ◽  
Author(s):  
E. Johnson ◽  
L. Gråbaek ◽  
J. Bohr ◽  
A. Johansen ◽  
L. Sarholt-Kristensen ◽  
...  

ABSTRACTIon implantation at room temperature of lead into aluminium leads to spontaneous phase separation and formation of lead precipitates growing topotactically with the matrix. Unlike the highly pressurised (∼ 1–5 GPa) solid inclusions formed after noble gas implantations, the pressure in the lead precipitates is found to be less than 0.12 GPa.Recently we have observed the intriguing result that the lead inclusions in aluminium exhibit both superheating and supercooling [1]. In this paper we review and elaborate on these results. Small implantation-induced lead precipitates embedded in an aluminium matrix were studied by X-ray diffraction. The (111) Bragg peak originating from the lead crystals was followed during several temperature cycles, from room temperature to 678 K. The melting temperature for bulk lead is 601 K. In the first heating cycle we found a superheating of the lead precipitates of 67 K before melting occurred. During subsequent cooling a supercooling of 21 K below the solidification point of bulk lead was observed. In the subsequent heating cycles this hysteresis at the melting transition was reproducible. The full width of the hysteresis loop slowly decreased to 62 K, while the mean size of the inclusions gradually increased from 14.5 nm to 27 nm. The phenomena of superheating and supercooling are thus most pronounced for the small crystallites. The persistence of the hysteresis loop over successive heating cycles demonstrate that its cause is intrinsic in nature, and it is believed that the superheating originates from the lack of free surfaces of the lead inclusions.


Sign in / Sign up

Export Citation Format

Share Document