Branchial Morphological and Endocrine Responses of Rainbow Trout (Oncorhynchus mykiss) to a Long-Term Sublethal Acid Exposure In Which Acclimation Did Not Occur

1993 ◽  
Vol 50 (1) ◽  
pp. 198-209 ◽  
Author(s):  
Céline Audet ◽  
Chris M. Wood

Changes in branchial morphology and in plasma Cortisol, adrenaline, and noradrenaline were quantified throughout an 81 -d exposure of rainbow trout (Oncorhynchus mykiss) to sublethal acidity (pH 4.8) in artificial soft water and after a 5-h acid challenge (pH 4.0) of naive fish and 81-d acid-preexposed fish. Changes in branchial morphology at pH 4.8 were generally very mild and characterized by slight increases in filamental mucous cells and decreases in lamellar mucous cells. Chloride cell numbers and branchial Na+–K+- and total ATPase activities did not change. The filamental epithelium thickened, but the water–blood diffusion distance in the lamellae decreased during chronic exposure. Cortisol was significantly elevated throughout whereas catecholamines exhibited relatively little response. Response to acute pH 4.0 challenge was similar in naive and 81-d acid-exposed fish: epithelial damage, increase in visible mucous cells, loss of chloride cells by necrosis, and high cortisol levels but no changes in lamellar or filamental epithelial thickness, diffusion distance, ATPase activities, or catecholamine levels. Previously reported physiological data from these same trout demonstrated that sensitization rather than acclimation had occurred. Therefore, these observations support the view that acclimation does not occur in the absence of significant branchial damage and repair.

2020 ◽  
Vol 142 ◽  
pp. 105836
Author(s):  
Kristina Rehberger ◽  
Elena Wernicke von Siebenthal ◽  
Christyn Bailey ◽  
Patrick Bregy ◽  
Melanie Fasel ◽  
...  

1995 ◽  
Vol 31 (5) ◽  
pp. 367-378 ◽  
Author(s):  
Gary K. Ostrander ◽  
James B. Blair ◽  
Beverly A. Stark ◽  
Garry M. Marley ◽  
Wesley D. Bales ◽  
...  

1991 ◽  
Vol 48 (10) ◽  
pp. 2028-2033 ◽  
Author(s):  
J. Freda ◽  
D. A. Sanchez ◽  
H. L. Bergman

The objective of this study was to investigate possible sites for Na+ loss in fish exposed to low environmental pH. In rainbow trout (Oncorhynchus mykiss) exposed to pH 4.0 for 1 h, a net loss of Na+ was stimulated, and changes in gill structure occurred. In addition to epithelial lifting and necrosis in the gills of acid-exposed fish, tight junctions between pavement epithelial cells and chloride cells decreased in length by 25% whereas tight junctions between adjacent pavement cells did not significantly change. In a second experiment where fish were moved from pH 4.0 or 3.5 water to pH 6.5 water, we observed that Na+ loss declined immediately and approached control levels. The reversible nature of the stimulation of Na+ loss indicates that the site of Na+ loss in the fish gill can be reversibly opened and closed, which is consistent with the known properties of tight junctions. We hypothesize that the opening of tight junctions contributes to the loss of plasma electrolytes at low environmental pH. However, the relative magnitude of electrolyte loss through the tight junctions remains unknown.


1994 ◽  
Vol 72 (8) ◽  
pp. 1395-1402 ◽  
Author(s):  
Shawn D. Bindon ◽  
James C. Fenwick ◽  
Steve F. Perry

The effects of branchial chloride cell proliferation on ion transport capability and gill morphometry were evaluated in the rainbow trout, Oncorhynchus mykiss, to test the hypothesis that chloride cell (CC) proliferation benefits ionic regulation at the expense of efficient gas transfer. The extent of hormone-induced CC proliferation (using ovine growth hormone (oGH), cortisol, or a combination of both) on the gill filament epithelium was assessed by determining the fractional surface area of exposed cells using scanning electron microscopy. Cortisol and oGH were equally effective in increasing CC fractional surface area (~2×), owing to the enlargement of individual CCs. The combined cortisol/oGH treatment resulted in an even greater increase in CC fractional area (~6×), as both the size and number of CCs increased. Sham injections were without effect on CC surface area or number. Significant increases in Na+ (Jin Na+) and Cl− uptake (Jin Cl−) were observed after all hormone treatments and were correlated positively with the increases in the CC fractional surface area. These findings support the view that CC proliferation enhances branchial ion transport capability. Lamellar epithelial thickness (measured by transmission electron microscopy) was increased in hormone-treated fish, while lamellar surface area (measured using light microscopy) was unaffected. The area of the interlamellar water channels (calculated from light micrographs) was significantly reduced in hormone-treated fish. These results suggest that, in trout, a compromise is made between the efficiency of ion regulation and gas transfer in which the enlargement/proliferation of CCs may impede gas transfer.


Sign in / Sign up

Export Citation Format

Share Document