scholarly journals Computer Simulations of the Influence of Ocean Currents on Fraser River Sockeye Salmon (Oncorhynchus nerka) Return Times

1994 ◽  
Vol 51 (2) ◽  
pp. 441-449 ◽  
Author(s):  
Keith A. Thomson ◽  
W. James Ingraham Jr. ◽  
Michael C. Healey ◽  
Paul H. LeBlond ◽  
Cornelius Groot ◽  
...  

We hypothesized that the interannual variability of the northeast Pacific Ocean circulation affects the return times of Fraser River sockeye salmon (Oncorhynchus nerka). Homeward migrations were simulated for 1982 (with a relatively weak Alaska Gyre circulation) and 1983 (with a relatively strong circulation) in the context of three sequential return migration phases: a nondirected oceanic phase, a directed oceanic phase, and a directed coastal phase. Passive drifters were simulated to examine the influence of ocean currents during the nondirected oceanic phase: model fish south of 48°N were advected closer to Vancouver Island in 1983 compared with 1982; those north of 48°N were advected closer to Vancouver Island in 1982 than in 1983. Fish were simulated during the directed oceanic phase using a variety of behaviour scenarios: model fish starting south of 50°N had earlier return times in 1983 than in 1982; those starting north of 50°N had return times in 1983 that were generally the same as or later than in 1982. We inferred that ocean currents would modulate the environmental influences on return times during the directed coastal migration phase, by deflecting sockeye salmon into different oceanographic domains along the British Columbia coast.

2006 ◽  
Vol 63 (12) ◽  
pp. 2722-2733 ◽  
Author(s):  
Carrie A Holt ◽  
Randall M Peterman

In sockeye salmon (Oncorhynchus nerka) fisheries, management targets are rarely achieved exactly, thereby creating uncertainties about outcomes from implementing fishing regulations. Although this type of uncertainty may be large, it is seldom incorporated into simulation models that evaluate management options. One objective of this study was to quantify the deviations that occur between realized and target mortality rates (i.e., the target fraction of adult recruits that die each year during return migration, mostly due to harvesting) in fisheries for sockeye salmon from the Fraser River, British Columbia. We found that for some sockeye stocks, realized mortality rates were higher than targets when recruitment was low (resulting in conservation concerns) and lower than targets when recruitment was high (resulting in foregone catch). Scientists and managers can at least partially account for effects of such deviations between realized and target mortality rates (outcome uncertainties) by choosing target harvest rules that reflect typical patterns in those deviations. We derived a method to permit modelers to incorporate those patterns into analyses of management options.


1960 ◽  
Vol 17 (3) ◽  
pp. 347-351 ◽  
Author(s):  
J. D. Wood ◽  
D. W. Duncan ◽  
M. Jackson

During the first 250 miles (400 km) of spawning migration of Fraser River sockeye salmon (Oncorhynchus nerka) the free histidine content of the muscle, alimentary tract, and head+skin+bones+tail decreased to a small fraction of the initial value. A further decrease occurred in the levels of this amino acid in the alimentary tract during the subsequent 415-mile (657-km) migration to the spawning grounds, no change being observed with the other tissues. Comparatively small changes in free histidine were found with heart, spleen, liver, kidney and gonads during migration.


2012 ◽  
Vol 69 (8) ◽  
pp. 1255-1260 ◽  
Author(s):  
Randall M. Peterman ◽  
Brigitte Dorner

We used data on 64 stocks of sockeye salmon ( Oncorhynchus nerka ) from British Columbia (B.C.), Washington, and Alaska to determine whether recent decreases in abundance and productivity observed for Fraser River, B.C., sockeye have occurred more widely. We found that decreasing time trends in productivity have occurred across a large geographic area ranging from Washington, B.C., southeast Alaska, and up through the Yakutat peninsula, Alaska, but not in central and western Alaska. Furthermore, a pattern of predominantly shared trends across southern stocks and opposite trends between them and stocks from western Alaska was present in the past (1950–1985), but correlations have intensified since then. The spatial extent of declining productivity of sockeye salmon has important implications for management as well as research into potential causes of the declines. Further research should focus on mechanisms that operate at large, multiregional spatial scales, and (or) in marine areas where numerous correlated sockeye stocks overlap.


2000 ◽  
Vol 57 (10) ◽  
pp. 1985-1998 ◽  
Author(s):  
Ruth E Withler ◽  
Khai D Le ◽  
R John Nelson ◽  
Kristina M Miller ◽  
Terry D Beacham

Analysis of six microsatellite loci in 5800 sockeye salmon (Oncorhynchus nerka) from 29 Fraser River populations provided little evidence of genetic bottlenecks or mass straying in upper Fraser sockeye salmon resulting from reduced abundances following 1913-1914 rockslides in the Fraser canyon and successive decades of high exploitation. Upper Fraser populations were not characterized by a paucity of rare alleles, a sensitive indicator of populations in which effective size has been recently reduced. Heterozygosity and allelic diversity did not differ consistently between lower and upper Fraser populations. Throughout the watershed, early-migrating populations had lower allelic diversity and a lower proportion of rare alleles than did late-migrating ones. Genetic differentiation between upper and lower Fraser populations and heterogeneity among lower Fraser populations supported the suggestion that Fraser sockeye salmon are descendants of at least two postglacial "races." Variation among lakes within regions was the strongest component of genetic structure, accounting for five times the variation among populations within lakes and more than two times the variation among regions. Extensive historical transplants of eggs and juveniles apparently resulted in lit tle gene flow among regions, but three populations were reestablished or rebuilt as the result of more recent transplants.


2005 ◽  
Vol 62 (9) ◽  
pp. 2124-2133 ◽  
Author(s):  
G N Wagner ◽  
S G Hinch ◽  
L J Kuchel ◽  
A Lotto ◽  
S RM Jones ◽  
...  

Adult sockeye salmon (Oncorhynchus nerka) acquire infections with the myxosporean kidney parasite Parvicapsula minibicornis during their spawning migration in the Fraser River, British Columbia. Controlled infections with this parasite in wild sockeye salmon had no significant impact on plasma ionic status, metabolic rates, and initial maximum prolonged swimming performance (Ucrit) for fish ranked as either strongly, weakly, or noninfected by polymerase chain reaction analysis of kidney tissue. However, strongly infected fish had significantly lower second Ucrit and recovery ratio (8%) values, indicating decreased ability to recover from exercise. As the present study shows that the severity of infection is affected by time and temperature, the accumulated thermal units (ATU) of exposure in this study were compared with those experienced by naturally migrating sockeye salmon. A parallel telemetry study revealed that early-timed sockeye experienced significantly more ATU (741.4 ± 29.4 °C) than normally migrating salmon (436.0 ± 20.0 °C) prior to spawning because of a significantly longer holding period in the lake system. The present data are discussed in the context of a threshold of >450 °C ATU for severe infection that would first manifest in early-timed fish in the upper reaches of the Fraser River and certainly on the spawning grounds.


2012 ◽  
Vol 69 (2) ◽  
pp. 330-342 ◽  
Author(s):  
Eduardo G. Martins ◽  
Scott G. Hinch ◽  
David A. Patterson ◽  
Merran J. Hague ◽  
Steven J. Cooke ◽  
...  

Recent studies have shown that warm temperatures reduce survival of adult migrating sockeye salmon ( Oncorhynchus nerka ), but knowledge gaps exist on where high-temperature-related mortality occurs along the migration and whether females and males are differentially impacted by river temperature. In this study, we monitored 437 radio-tagged Fraser River sockeye salmon and used capture–mark–recapture modelling approaches to investigate whether river thermal conditions differentially influence (i) spatial patterns of survival along a 413-km stretch of migration and (ii) survival of the sexes. Regardless of water temperature, survival decreased in the river section containing the most hydraulically difficult passages of the migration. However, when water temperature was warm (19 °C), survival decreased even further in the final 186 km of the migration prior to reaching the spawning grounds, particularly in females. Female and male survival differed but only when they experienced warm river temperatures. Under such conditions, the overall freshwater migration survival of males was 1.6 times higher (0.79 ± 0.09 standard error, SE) than that of females (0.50 ± 0.11 SE). As maturing female sockeye salmon maintain higher levels of plasma cortisol compared with males, we suspect that females could be immuno-compromised and thus less resistant to pathogens whose rates of development are accelerated by warm temperatures.


2009 ◽  
Vol 87 (6) ◽  
pp. 480-490 ◽  
Author(s):  
M. R. Donaldson ◽  
S. J. Cooke ◽  
D. A. Patterson ◽  
S. G. Hinch ◽  
D. Robichaud ◽  
...  

The objective of this study was to combine radio telemetry with individual thermal loggers to assess the extent to which adult migrating sockeye salmon ( Oncorhynchus nerka (Walbaum in Artedi, 1792)) behaviourally thermoregulate during their migration through the Fraser River mainstem, British Columbia. The Fraser mainstem represents a region of the migration route that contains some of the highest mean temperatures encountered by sockeye salmon during their life history. We found that throughout the study area, individual sockeye salmon body temperatures occasionally deviated from ambient temperatures (ΔT), yet individuals maintained a ΔT of –1 °C or cooler for only 5% of their migration through the study region. There were moderate mean deviations of ΔT in two segments that are known to contain thermally stratified waters. In one of the study segments with the greatest ΔT, mean body temperatures decreased as river temperatures increased and ΔT became increasingly positive with higher river discharge rates, but these relationships were not observed in any of the other study segments. No relationship existed between ΔT and migration rate. While periodic associations with cool water were evident, mean body temperatures were not significantly different than mean river temperatures throughout the lower Fraser mainstem. This finding raises further conservation concerns for vulnerable Fraser River sockeye stocks that are predicted to encounter increasing peak summer river temperatures in the coming decades.


2010 ◽  
Vol 17 (1) ◽  
pp. 99-114 ◽  
Author(s):  
EDUARDO G. MARTINS ◽  
SCOTT G. HINCH ◽  
DAVID A. PATTERSON ◽  
MERRAN J. HAGUE ◽  
STEVEN J. COOKE ◽  
...  

1982 ◽  
Vol 39 (2) ◽  
pp. 264-269
Author(s):  
Peter N. Gardner

The recruitment function for the Fraser River sockeye salmon (Oncorhynchus nerka) stock was estimated by allowing cycle differences between year-classes to be represented by dummy variables, by allowing the effects of weight on cycle year differences to be included through the use of biomass forms of the variables, and by disaggregating year-class escapement by race according to freshwater lake residence to represent differences between races. Comparisons were made with the conventional model.Key words: year-class cycle dummies, biomass variables, race escapements, sockeye salmon


Sign in / Sign up

Export Citation Format

Share Document