scholarly journals Larger Daphnia at lower temperature: a role for cell size and genome configuration?

Genome ◽  
2013 ◽  
Vol 56 (9) ◽  
pp. 511-519 ◽  
Author(s):  
Marwa Jalal ◽  
Marcin W. Wojewodzic ◽  
Carl Morten M. Laane ◽  
Dag O. Hessen

Experiments with Daphnia magna and Daphnia pulex raised at 10 and 20 °C yielded larger adult size at the lower temperature. This must reflect increased cell size, increased cell numbers, or a combination of both. As it is difficult to achieve good estimates on cell size in crustaceans, we, therefore, measured nucleus and genome size using flow cytometry at 10 and 20 °C. DNA was stained with propidium iodide, ethidium bromide, and DAPI. Both nucleus and genome size estimates were elevated at 10 °C compared with 20 °C, suggesting that larger body size at low temperature could partly be accredited to an enlarged nucleus and thus cell size. Confocal microscopy observations confirmed the staining properties of fluorochromes. As differences in nucleotide numbers in response of growth temperature within a life span is unlikely, these results seem accredited to changed DNA–fluorochrome binding properties, presumably reflecting increased DNA condensation at low temperature. This implies that genome size comparisons may be impacted by ambient temperature in ectotherms. It also suggests that temperature-induced structural changes in the genome could affect cell size and for some species even body size.

2021 ◽  
Author(s):  
Michael W Itgen ◽  
Dustin S Siegel ◽  
Stanley K Sessions ◽  
Rachel Lockridge Mueller

Morphogenesis is an emergent property of biochemical and cellular interactions during development. Genome size and the correlated trait of cell size can influence these interactions through its effects on developmental rate and tissue geometry, ultimately driving the evolution of morphology. We tested the effects of genome size and body size evolution on heart and liver morphology using nine species of the salamander genus Plethodon (genome sizes 29.3-67 Gb). Our results show that whole organ size is determined by body size, whereas tissue structure changes dramatically with evolutionary increases in genome size. In the heart, increased genome size is correlated with a reduction of myocardia in the ventricle, yielding proportionally less force-producing mass and more empty space. In the liver, increased genome size is correlated with fewer and larger vascular structures, positioning hepatocytes farther from the circulatory vessels that transport key metabolites. Although these structural changes should have obvious impacts on organ function, their effects on organismal performance and fitness are likely negligible because low metabolic rates in salamanders relax selective pressure on key metabolic organ performance. Overall, this study reveals the effects of large genome and cell size on the developmental systems producing the heart and liver.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 270
Author(s):  
Douglas S. Glazier

The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei (‘genome size’). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell ‘bottleneck’ of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.


2014 ◽  
Vol 92 (10) ◽  
pp. 847-851 ◽  
Author(s):  
Kelly L. Mulligan ◽  
Terra C. Hiebert ◽  
Nicholas W. Jeffery ◽  
T. Ryan Gregory

Ribbon worms (phylum Nemertea) are among several animal groups that have been overlooked in past studies of genome-size diversity. Here, we report genome-size estimates for eight species of nemerteans, including representatives of the major lineages in the phylum. Genome sizes in these species ranged more than fivefold, and there was some indication of a positive relationship with body size. Somatic endopolyploidy also appears to be common in these animals. Importantly, this study demonstrates that both of the most common methods of genome-size estimation (flow cytometry and Feulgen image analysis densitometry) can be used to assess genome size in ribbon worms, thereby facilitating additional efforts to investigate patterns of variability in nuclear DNA content in this phylum.


2017 ◽  
Author(s):  
Nicholas W. Jeffery ◽  
Emily A. Ellis ◽  
Todd H. Oakley ◽  
T. Ryan Gregory

AbstractWithin animals a positive correlation between genome size and body size has been detected in several taxa but not in others, such that it remains unknown how pervasive this pattern may be. Here we provide another example of a positive relationship, in a group of crustaceans whose genome sizes have not previously been investigated. We analyze genome size estimates for 46 species across Class Ostracoda, including 29 new estimates made using Feulgen image analysis densitometry and flow cytometry. Genome sizes in this group range ~80-fold, a level of variability that is otherwise not seen in crustaceans with the exception of some malacostracan orders. We find a strong positive correlation between genome size and body size across all species, including after phylogenetic correction. We additionally detect evidence of XX/XO sex determination in all three species of myodocopids where male and female genome sizes were estimated. On average, genome sizes are larger but less variable in myodocopids than in podocopids, and marine ostracods have larger genomes than freshwater species, but this appears to be explained by phylogenetic inertia. The relationship between phylogeny, genome size, body size, and habitat is complex in this system, and will benefit from additional data collection across various habitats and ostracod taxa.


Genome ◽  
2014 ◽  
Vol 57 (8) ◽  
pp. 439-448 ◽  
Author(s):  
Marwa Jalal ◽  
Nita K. Shala ◽  
Marcin W. Wojewodzic ◽  
Tom Andersen ◽  
Dag O. Hessen

Temperature and nutrient availability are both hypothesized to affect organisms at the cellular and genomic levels. In this multigenerational study, Daphnia magna (D. magna) and Daphnia pulex (D. pulex) were maintained at high (20 °C) and low (10 °C) temperatures and nourished with phosphorus (P)-sufficient (50 μmol/L) and P-deficient (2 μmol/L) algae for up to 35 generations to assess the multigenerational impacts on genome size and nucleus size. Analysis by flow cytometry revealed significant increases in nucleus size for both species as well as genome size for D. magna in response to a low temperature. The degree of endoreplication, measured as cycle value, was species specific and responded to temperature and dietary composition. Under dietary P deficiency, D. magna, but not D. pulex, showed an apparent reduction in haploid genome size (C-value). These genomic responses are unlikely to reflect differences in nucleotide numbers, but rather structural changes affecting fluorochrome binding. While the ultimate and proximate causes of these responses are unknown, they suggest an intriguing potential for genomic responses that merits further research.


2021 ◽  
Author(s):  
Jun-Ichiro Makiura ◽  
Takuma Higo ◽  
Yutaro Kurosawa ◽  
Kota Murakami ◽  
Shuhei Ogo ◽  
...  

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.


Genetics ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Na Wang ◽  
Jianing Liu ◽  
William A Ricci ◽  
Jonathan I Gent ◽  
R Kelly Dawe

Abstract Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.


2014 ◽  
Vol 60 (6) ◽  
pp. 700-711 ◽  
Author(s):  
Nina A. Vasilieva ◽  
Ekaterina V. Pavlova ◽  
Sergey V. Naidenko ◽  
Andrey V. Tchabovsky

Abstract Life-history theory predicts that in hibernators age of maturation is related positively to body size and negatively to the duration of active season aboveground. Yellow souslik is a large-sized ground squirrel with long hibernation, which suggests late maturation. We used four-year field observations of marked individuals to determine the age of maturation in males through analysis of age-dependent variation in body size, mass, androgen status, timing of spring emergence, ranging patterns and social behavior during the mating season. Yearling males were smaller, lighter, had lower level of fecal testosterone, emerged later and had smaller home ranges than older males. Social activity and the number of females encountered did not differ between age classes. After the second hibernation none of the studied parameters varied with age. Cluster analysis revealed two behavioral tactics: “active” males (adults only) emerged earlier, ranged more widely, initiated more contacts, encountered more females and were heavier than “passive” males (both yearling and adult). Thus, males of S. fulvus reached adult size and matured after two hibernations, which is relatively fast for such a big species with short active period. Indirect evidence for copulations and high variation among yearlings in all parameters suggest that some of them might successfully compete with adults. Active tactic of wandering and searching for females is energetically costly, and probably only adult males in good physical condition can afford it, whereas passive tactic of residing is energy saving and good for adults in poor condition and for yearlings that are continuing to grow.


Sign in / Sign up

Export Citation Format

Share Document