Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans

2008 ◽  
Vol 33 (6) ◽  
pp. 1124-1131 ◽  
Author(s):  
Sean C. Forbes ◽  
Jill M. Slade ◽  
Ronald A. Meyer

Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaowei Kong ◽  
Shengyan Sun ◽  
Min Liu ◽  
Qingde Shi

This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women.Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption (V˙O2peak) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% ofV˙O2peak.V˙O2peak, body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training.Results. Both exercise groups achieved significant improvements inV˙O2peak(+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p=0.062). The rating of perceived exertion in MICT was higher than that in HIIT (p=0.042).Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.


2013 ◽  
Vol 114 (11) ◽  
pp. 1550-1562 ◽  
Author(s):  
Alexandra M. Williams ◽  
Donald H. Paterson ◽  
John M. Kowalchuk

During step transitions in work rate (WR) within the moderate-intensity (MOD) exercise domain, pulmonary O2 uptake (V̇o2p) kinetics are slowed, and V̇o2p gain (ΔV̇o2p/ΔWR) is greater when exercise is initiated from an elevated metabolic rate. High-intensity interval training (HIT) has been shown to speed V̇o2p kinetics when step transitions to MOD exercise are initiated from light-intensity baseline metabolic rates. The effects of HIT on step transitions initiated from elevated metabolic rates have not been established. Therefore, this study investigated the effects of HIT on V̇o2p kinetics during transitions from low and elevated metabolic rates, within the MOD domain. Eight young, untrained men completed 12 sessions of HIT (spanning 4 wk). HIT consisted of 8–12 1-min intervals, cycling at a WR corresponding to 110% of pretraining maximal WR (WRmax). Pre-, mid- and posttraining, subjects completed a ramp-incremental test to determine maximum O2 uptake, WRmax, and estimated lactate threshold (θ̂L). Participants additionally completed double-step constant-load tests, consisting of step transitions from 20 W → Δ45% θ̂L [lower step (LS)] and Δ45 → 90% θ̂L [upper step (US)]. HIT led to increases in maximum O2 uptake ( P < 0.05) and WRmax ( P < 0.01), and τV̇o2p of both lower and upper MOD step transitions were reduced by ∼40% (LS: 24 s → 15 s; US: 45 s → 25 s) ( P < 0.01). However, the time course of adjustment of local muscle deoxygenation was unchanged in the LS and US. These results suggest that speeding of V̇o2p kinetics in both the LS and US may be due, in part, to an improved matching of muscle O2 utilization to microvascular O2 delivery within the working muscle following 12 sessions of HIT, although muscle metabolic adaptations cannot be discounted.


2020 ◽  
Vol 9 (10) ◽  
pp. e7069109186
Author(s):  
Carolina Cavalcante de Paula ◽  
Sergio Machado ◽  
Gustavo De Conti Teixeira Costa ◽  
Marcelo Magalhães Sales ◽  
Thiago Gottgtroy Miranda ◽  
...  

The immune system's response against SARS-Cov-2 seems crucial to control viral infection, since this system is homeostatic, dynamic and promotes immunoprotection of the organism through the activation of the innate and adaptive immune system via activation of cellular and chemical complexes that recognize, neutralize, metabolize and eliminate heterologous substances, with or without tissue damage. An obesogenic microenvironment can further increase the risk of disease complications, and cause a more virulent viral strain and a more lethal virus. Moreover, physical inactivity as well as poor eating habits impairs the body's energy metabolism and immune cells due to low-grade chronic inflammation. Studies suggest that light to moderate exercise, as well as mild calorie restriction, as an effective approach to relieve obesity and therefore an interesting strategy to strengthen the immune response during the outbreak of COVID-19, while a vaccine is not developed. Some studies have been shown significant findings in favor of High intensity interval training (HIIT) protocols when compared to moderate intensity exercise, showing how immunological system responds to vigorous to high intensity training. However, HIIT has a lower cost of time, reducing the time/efficiency ratio, that is, a lower cost of time with similar or even better benefits to higher volume exercise programs. Let us not forget: "time is the most precious asset we have".


2020 ◽  
Vol 105 (8) ◽  
pp. e2941-e2959 ◽  
Author(s):  
Benjamin J Ryan ◽  
Michael W Schleh ◽  
Cheehoon Ahn ◽  
Alison C Ludzki ◽  
Jenna B Gillen ◽  
...  

Abstract Objective We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. Methods Thirty-one inactive adults with obesity (age: 31 ± 6 years; body mass index: 33 ± 3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. Results Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P &lt; 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P &lt; 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. Conclusion Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.


2017 ◽  
Vol 313 (2) ◽  
pp. E243-E256 ◽  
Author(s):  
Rachel A. H. Davis ◽  
Jacob E. Halbrooks ◽  
Emily E. Watkins ◽  
Gordon Fisher ◽  
Gary R. Hunter ◽  
...  

Calorie restriction (CR) decreases adiposity, but the magnitude and defense of weight loss is less than predicted due to reductions in total daily energy expenditure (TEE). The purpose of the current investigation was to determine whether high-intensity interval training (HIIT) would increase markers of sympathetic activation in white adipose tissue (WAT) and rescue CR-mediated reductions in EE to a greater extent than moderate-intensity aerobic exercise training (MIT). Thirty-two 5-wk-old male C57BL/6J mice were placed on ad libitum HFD for 11 wk, followed by randomization to one of four groups ( n = 8/group) for an additional 15 wk: 1) CON (remain on HFD), 2) CR (25% lower energy intake), 3) CR + HIIT (25% energy deficit created by 12.5% CR and 12.5% EE through HIIT), and 4) CR + MIT (25% energy deficit created by 12.5% CR and 12.5% EE through MIT). Markers of adipose thermogenesis ( Ucp1, Prdm16, Dio2, and Fgf21) were unchanged in either exercise group in inguinal or epididymal WAT, whereas CR + HIIT decreased Ucp1 expression in retroperitoneal WAT and brown adipose tissue. HIIT rescued CR-mediated reductions in lean body mass (LBM) and resting energy expenditure (REE), and both were associated with improvements in glucose/insulin tolerance. Improvements in glucose metabolism in the CR + HIIT group appear to be linked to a molecular signature that enhances glucose and lipid storage in skeletal muscle. Exercise performed at either moderate or high intensity does not increase markers of adipose thermogenesis when performed in the presence of CR but remodels skeletal muscle metabolic and thermogenic capacity.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 290-OR
Author(s):  
BENJAMIN J. RYAN ◽  
MICHAEL W. SCHLEH ◽  
PALLAVI VARSHNEY ◽  
ALISON LUDZKI ◽  
JENNA B. GILLEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document