Parametric effect of vertical ground acceleration on the earthquake response of elastic structures

1990 ◽  
Vol 17 (2) ◽  
pp. 209-217 ◽  
Author(s):  
S. T. Ariaratnam ◽  
K. C. K. Leung

An analytical procedure is presented for the calculation of the statistical properties of the response of a linear elastic tall building under earthquake excitation. Emphasis is placed on the effect of the vertical ground motion. The restoring force in each story of the structural model is assumed to arise from the bending deformation of the columns whose rigidities are subjected to a general reduction due to the combined action of gravitational forces and the random variations due to vertical ground acceleration. Since earthquakes are random phenomena, stochastic modelling of ground motion seems appropriate. Both the vertical and the horizontal accelerations are treated as amplitude-modulated Gaussian random processes. With these models, the techniques developed herein, using the concept of Markov processes and Itô's stochastic differential equations, may be applied. To illustrate the application of the method, numerical results are presented for a six-story building. For computational purposes, the structural properties are evaluated using the finite element method. Within the limit of linear elastic deformation, the vertical ground acceleration is shown to be capable of causing only a slight increase of 0.08% in the lateral displacement for this moderately tall building. The percentage is expected to be larger for a taller building and much larger when the deformations exceed the elastic limit. Key words: earthquake excitation, elastic frames, random vibration, Markov process, dynamic response.

2021 ◽  
Vol 2070 (1) ◽  
pp. 012010
Author(s):  
S M Khatami ◽  
H Naderpour ◽  
A Mortezaei ◽  
S T. Tafreshi ◽  
A Jakubczyk-Gałczyńska ◽  
...  

Abstract The aim of the present paper is to verify the effectiveness of the artificial neural network (ANN) in predicting the peak lateral displacement of multi-story building during earthquakes, based on the peak ground acceleration (PGA) and building parameters. For the purpose of the study, the lumped-mass multi-degree-of-freedom structural model and different earthquake records have been considered. Firstly, values of stories mass and stories stiffness have been selected and building vibration period has been automatically calculated. The ANN algorithm has been used to determine the limitation of the peak lateral displacement of the multi-story building with different properties (height of stories, number of stories, mass of stories, stiffness of stories and building vibration period) exposed to earthquakes with various PGA. Then, the investigation has been focused on critical distance between two adjacent buildings so as to prevent their pounding during earthquakes. The proposed ANN has logically predicted the limitation of the peak lateral displacement for the five-story building with different properties. The results of the study clearly indicate that the algorithm is also capable to properly predict the peak lateral dis-placements for two buildings so as to prevent their pounding under different earthquakes. Subsequently, calculation of critical distance can also be optimized to save the land and provide the safety space between two adjacent buildings prone to seismic excitations.


1992 ◽  
Vol 82 (1) ◽  
pp. 44-60
Author(s):  
Tatsuo Ohmachi ◽  
Saburoh Midorikawa

Abstract To interpret observations of the upthrow of boulders followed by their remarkable displacement during the 1984 Western Nagano Prefecture, Japan, earthquake, shaking-table experiments, field measurements, and numerical simulations on the upthrow were conducted. First, upthrow of objects was produced during a shaking-table vibration experiment in which table motion was in the horizontal direction only. Next, after field measurements on the ground and boulders were carried out to determine the parameters in the numerical simulations, a series of numerical simulations was conducted using the distinct element method. Both the experimental and numerical approaches not only resulted in reinforcement of Newmark's argument (1973) that the upthrow does not necessarily indicate vertical ground acceleration greater than that of gravity, but further extended it to quantitative assessment of ground-motion intensity.


2016 ◽  
Vol 32 (2) ◽  
pp. 979-1004 ◽  
Author(s):  
Yousef Bozorgnia ◽  
Kenneth W. Campbell

We summarize the development of the NGA-West2 Bozorgnia-Campbell empirical ground motion model (GMM) for the vertical components of peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped elastic pseudo-absolute acceleration response spectra (PSA) at vertical periods ranging from 0.01 s to 10 s. In the development of the vertical GMM, similar to our 2014 horizontal GMM, we used the extensive PEER NGA-West2 worldwide database. We consider our new vertical GMM to be valid for shallow crustal earthquakes in active tectonic regions for magnitudes ranging from 3.3 to 7.5–8.5, depending on the style of faulting, and for distances as far as 300 km from the fault.


Author(s):  
Giles W. Hunt ◽  
Antoinette Tordesillas ◽  
Steven C. Green ◽  
Jingyu Shi

Parallels are drawn between the response of a discrete strut on a linear elastic foundation and force-chain buckling in a constrained granular medium. Both systems buckle initially into periodic shapes, with wavelengths that depend on relative resistances to lateral displacement, and curvature in the buckled shape. Under increasing end shortening, the classical structural model evolves to a localized form extending over a finite number of contributing links. By analogy, it is conjectured that the granular model of force-chain buckling might follow much the same evolutionary route into a shear band.


1991 ◽  
Vol 81 (3) ◽  
pp. 715-732
Author(s):  
M. Niazi ◽  
Y. Bozorgnia

Abstract Over 700 accelerograms recorded from 12 earthquakes in northeast Taiwan have been analyzed for investigating the behavior of vertical and horizontal peak and spectral ground motion in the near-source region. Peak horizontal and vertical ground acceleration (PGA), velocity (PGV), and displacement (PGD) in the range of engineering interest have been subjected to a two-step nonlinear regression procedure in terms of magnitude and hypocentral distance. In comparison with a number of other studies of global PGA observations, our predictions show lower far-field attenuation, lower near-source amplitudes, higher magnitude saturation for the vertical component, lower magnitude saturation for the horizontal component, and higher magnitude scaling. The 2 / 3 ratio of vertical to horizontal ground motion, commonly used in engineering applications, may be unconservative in the very near-field for high-frequency ground motion. It falls below 1 / 2 at distances greater than 50 km. The same ratio for PGV and PGD tends to increase with distance, the latter at a faster rate. For SMART-1 data the major source of uncertainty appears to be inter-event rather than intra-event randomness. The predominance of the inter-event uncertainty in ground motions near the source is expected to be a characteristic of all dense arrays.


2021 ◽  
pp. 875529302110194
Author(s):  
Daniel Verret ◽  
Denis LeBœuf ◽  
Éric Péloquin

Eastern North America (ENA) is part of a region with low-to-moderate seismicity; nonetheless, some significant seismic events have occurred in the last few decades. Recent events have reemphasized the need to review ENA seismicity and ground motion models, along with continually reevaluating and updating procedures related to the seismic safety assessment of hydroelectric infrastructures, particularly large dams in Québec. Furthermore, recent researchers have shown that site-specific characteristics, topography, and valley shapes may significantly aggravate the severity of ground motions. To the best of our knowledge, very few instrumental data from actual earthquakes have been published for examining the site effects of hydroelectric dam structures located in eastern Canada. This article presents an analysis of three small earthquakes that occurred in 1999 and 2002 at the Denis-Perron (SM-3) dam. This dam, the highest in Québec, is a rockfill embankment structure with a height of 171 m and a length of 378 m; it is located in a narrow valley. The ground motion datasets of these earthquakes include the bedrock and dam crest three-component accelerometer recordings. Ground motions are analyzed both in the time and frequency domains. The spectral ratios and transfer functions obtained from these small earthquakes provide new insights into the directionality of resonant frequencies, vibration modes, and site effects for the Denis-Perron dam. The crest amplifications observed for this dam are also compared with previously published data for large dams. New statistical relationships are proposed to establish dam crest amplification on the basis of the peak ground acceleration (PGA) at the foundation.


Author(s):  
Luigi Lombardo ◽  
Hakan Tanyas

AbstractGround motion scenarios exists for most of the seismically active areas around the globe. They essentially correspond to shaking level maps at given earthquake return times which are used as reference for the likely areas under threat from future ground displacements. Being landslides in seismically actively regions closely controlled by the ground motion, one would expect that landslide susceptibility maps should change as the ground motion patterns change in space and time. However, so far, statistically-based landslide susceptibility assessments have primarily been used as time-invariant.In other words, the vast majority of the statistical models does not include the temporal effect of the main trigger in future landslide scenarios. In this work, we present an approach aimed at filling this gap, bridging current practices in the seismological community to those in the geomorphological and statistical ones. More specifically, we select an earthquake-induced landslide inventory corresponding to the 1994 Northridge earthquake and build a Bayesian Generalized Additive Model of the binomial family, featuring common morphometric and thematic covariates as well as the Peak Ground Acceleration generated by the Northridge earthquake. Once each model component has been estimated, we have run 1000 simulations for each of the 217 possible ground motion scenarios for the study area. From each batch of 1000 simulations, we have estimated the mean and 95% Credible Interval to represent the mean susceptibility pattern under a specific earthquake scenario, together with its uncertainty level. Because each earthquake scenario has a specific return time, our simulations allow to incorporate the temporal dimension into any susceptibility model, therefore driving the results toward the definition of landslide hazard. Ultimately, we also share our results in vector format – a .mif file that can be easily converted into a common shapefile –. There, we report the mean (and uncertainty) susceptibility of each 1000 simulation batch for each of the 217 scenarios.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


Sign in / Sign up

Export Citation Format

Share Document