Influence of hydrodynamic effects on iceberg collisions

1990 ◽  
Vol 17 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Michael Isaacson ◽  
Kevin McTaggart

This paper examines various hydrodynamic effects which should be considered when analyzing iceberg collisions with a fixed structure. Iceberg added mass is among the hydrodynamic parameters that must be known to evaluate collision severity. Effective added mass is shown to vary with collision duration and recommendations are made for the selection of added masses to be used in iceberg collision design. Iceberg impact velocities are influenced by waves and currents, which can both be significantly influenced by the presence of a large structure. Wave-driven iceberg drift motions are shown to be more sensitive than current-driven motions to the presence of a structure. The contribution of wave-induced oscillatory motions to impact velocity is also discussed. Key words: added mass, hydrodynamics, ice impact, icebergs, ocean engineering, offshore structures.

1990 ◽  
Vol 112 (4) ◽  
pp. 364-369
Author(s):  
M. Isaacson ◽  
K. A. McTaggart

A probabilistic model is developed for the selection of a design iceberg collision event with a fixed offshore structure. The model has been formulated such that input parameters can be obtained from available iceberg surveillance and wave climate data. Once input data for a given site are obtained, probabilities of exceedance for various kinetic energy levels are estimated using a second-order reliability method. A key feature of the model is its incorporation of wave-induced motions and added mass in the evaluate of iceberg kinetic energy.


1989 ◽  
Vol 16 (4) ◽  
pp. 543-551 ◽  
Author(s):  
Michael Isaacson ◽  
John Baldwin

The various effects that influence loads acting on a large offshore structure due to the combination of waves and currents are reviewed. These may be broadly associated with potential flow effects and viscous effects. The potential flow effects are nonlinear and may generally be investigated by perturbation or time-stepping methods. Viscous effects include the onset of flow separation, which affects the validity of the assumed potential flow, as well as steady and oscillatory forces. The fluid mechanics of the complete wave–current–structure interaction problem are not yet well understood and areas in need of additional research are identified. Key words: currents, drag, drift forces, hydrodynamics, ocean engineering, offshore structures, waves, wave forces.


1988 ◽  
Vol 15 (4) ◽  
pp. 698-708 ◽  
Author(s):  
Michael Isaacson ◽  
Kwok Fai Cheung

The present paper applies potential theory to describe the variation of the added mass of an iceberg and its coupling effects on an offshore structure for various separation distances up to the point of contact. The strengths and weaknesses of the proposed model are discussed together with its practical application in ice mass impact problems. An impact model based on dynamic analysis is developed to calculate the impact force and response of a structure for head-on collisions. Both the contact-point added mass estimated in the present study and the traditionally assumed far-field added mass are used in the impact model separately. The results are compared and the crucial roles played by the ambient fluid during impact are discussed. Key words: added mass, hydrodynamics, ice impact, ocean engineering, offshore structures.


1990 ◽  
Vol 17 (3) ◽  
pp. 302-310 ◽  
Author(s):  
Michael Isaacson ◽  
Thomas Mathai ◽  
Carol Mihelcic

The added mass and the damping coefficient of a large surface-piercing circular cylinder extending to the seabed and undergoing horizontal oscillations are described. A closed-form solution to the corresponding linear radiation problem is obtained by the use of eigenfunction expansions. Attention is given to the vertical distribution of these coefficients and to their high-frequency asymptotic behaviour. Comparisons are made with experimental measurements. The application to typical offshore structures is discussed. Key words: added mass, cylinders, damping, hydrodynamics, ocean engineering.


1992 ◽  
Vol 19 (4) ◽  
pp. 606-615
Author(s):  
Michael Isaacson ◽  
Thomas Mathai

Alternative methods of calculating high frequency added masses and damping coefficients of vertical cylinders of arbitrary section are described. Damping coefficients are calculated by a short-wave approximation relating to the local form of waves generated by the oscillating structure. As an alternative, they are also obtained from the exciting forces of the related scattering problem, with these forces obtained by a geometrical optics approximation. Added masses are obtained by discarding the propagating mode and using only the evanescent modes which are free of irregular frequencies. They are also obtained by an application of the Kramers–Kronig relations, which require the infinite frequency added masses and the damping coefficients at all frequencies. Numerical results obtained by the various methods are compared with corresponding analytical results for vertical circular and elliptic cylinders. The practical application of the proposed approach is indicated. Key words: added mass, cylinders, damping, hydrodynamics, ocean engineering, offshore structures, waves.


1996 ◽  
Vol 23 (2) ◽  
pp. 418-430 ◽  
Author(s):  
Michael Isaacson ◽  
John Baldwin

The present paper provides a brief review of the analysis of moored floating structures in waves and currents. A hydrodynamic analysis is required in order to predict wave and current effects on floating structures, and corresponding numerical models for determining transmitted and reflected wave heights, added masses, damping coefficients, and wave exciting forces are summarized. A mooring analysis is required in conjunction with the hydrodynamic analysis in order to calculate the restraint provided by the mooring system, as well as the structure motions, mooring line and anchor loads, and mooring line configurations. Various aspects of static, dynamic, and nonlinear responses are discussed and illustrated with example applications. Key words: coastal engineering, currents, floating structures, hydrodynamics, mooring forces, ocean engineering, wave forces, waves.


Author(s):  
Jassiel V. Hernández-Fontes ◽  
Rodolfo Silva-Casarín ◽  
Edgar Mendoza

Abstract Capturing the propagation of green water events on in ships and other marine structures is of importance when studying the hydrodynamic effects on their motion and the structure’s behavior. Analytical models used to predict green water elevations, such as dam-break models, have been considered to represent time series of water elevations of single green water events. This paper presents the use of a convolution approach to represent the time series of water elevations of two consecutive green water events on deck of a fixed structure. The procedure is described considering green water events, generated with regular waves, on a barge-type fixed structure. Its application is compared with results available elsewhere in the literature. With the assumptions related with the selection of input parameters of the convolution model, and considering only the first green water event, the results show that this methodology allows two consecutive green water events to be captured acceptably. It is hoped that this methodology will be useful in further time-domain applications which study the dynamic behavior of structures subjected to green water.


Author(s):  
H. Karadeniz

This paper presents a general axi-symmetrical solid element to be used mainly for the calculation of added masses of water surrounding members of offshore structures, and in general, for multi-purposes such as analyses of shells of revolution, circular beams and plates, axi-symmetrical structures and soils, plane stress/strain problems. Since one element type is used for modeling of different media such as structures, soil and water, the element is very suitable to solve interaction problems. The element is derived parametrically so that changing values of parameters can generate flexible geometrical shapes in exact forms. In the element formulation, a constant shear locking is used to solve bending problems of beam like structures. A similar fluid element is also formulated to analyze fluid-structure interactions and to determine added masses of co-vibrating water. The added mass is calculated from hydrodynamic pressures, which are produced by fluid-structure interactions. In the paper, a special solution algorithm is presented for the coupled eigenvalue problem of the interaction. An analytic calculation of the added mass is also presented for members along which a constant variation of hydrodynamic pressure occurs. A couple of examples are provided to demonstrate applications of the elements explained. Added mass coefficients of offshore structural members (tubular members) are investigated for practical uses.


2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.


Sign in / Sign up

Export Citation Format

Share Document