Replacement of reinforced concrete deck of Champlain Bridge, Montreal, by orthotropic steel deck

1996 ◽  
Vol 23 (6) ◽  
pp. 1341-1349 ◽  
Author(s):  
G. P. Carlin ◽  
M. S. Mirza

The Champlain Bridge, Montreal, Quebec, has recently undergone replacement of its deteriorated reinforced concrete deck situated over the St. Lawrence Seaway with a new orthotropic steel deck. The new deck consists of 210 prefabricated steel panels which have been installed at the rate of one panel per night. The panels arrived on site with a base course of pavement to allow traffic flow over the new panels without disrupting the rush hour and daytime traffic. As a result of the new deck being 25% lighter in weight, the reserve strength capacity of the steel superstructure to accommodate live loads has increased sufficiently to bring the bridge within the governing live load requirements of the CAN/CSA Standard S6-1988 "Design of highway bridges." The governing design live loads on bridges have increased by about 50% since the original construction of the bridge over 30 years ago and reflect the larger vehicle weights permitted over Canadian roadways. Key words: alternative deck systems, cantilevered steel superstructure, closed rib stiffeners, counterweights, diaphragms, field erection, orthotropic plate deck, prefabrication, reinforced concrete, welding.

2000 ◽  
Vol 1740 (1) ◽  
pp. 118-125 ◽  
Author(s):  
Martin P. Burke ◽  
Joseph S. Seif

The transverse bracing provisions (diaphragms, cross-braces, crossframes, and so on) of the 1998 AASHTO load and resistance factor design (LRFD) bridge design specifications for the design of deck-type highway bridges are examined. This examination suggests that implementation of these provisions not only will have an adverse effect on the integrity and durability of reinforced concrete deck slabs, and consequently on life-cycle bridge costs; implementation of such provisions also has the potential to affect the desirability of steel bridge construction adversely. Instead of avoiding the use of midspan braces, as implied by LRFD provisions, it is urged that midspan braces be more generally recognized as primary elements of complex superstructure structural systems and thus be sized and spaced to function not only as transverse flange braces but also integrally with concrete deck slabs to distribute vehicular loads laterally. Such a practice not only will yield more efficient higher-quality structural systems capable of functioning effectively for 100 years or more, thus doubling their presently expected lives, but it will also help extend the service lives of the more vulnerable reinforced concrete deck slabs.


1995 ◽  
Vol 22 (3) ◽  
pp. 514-523 ◽  
Author(s):  
Baidar Bakht ◽  
Akhilesh C. Agarwal

Canadian codes allow the design of concrete deck slabs of slab-on-girder bridges by taking account of the internal arching action that develops in these slabs under concentrated wheel loads in particular. Provided that certain prescribed conditions are met, a deck slab is deemed to have met the design criteria if it is provided with a top and a bottom layer of steel reinforcement with each layer consisting of an orthogonal mesh of steel bars in which the area of cross section of the bars in each direction is at least 0.3% of the effective area of cross section of the deck slab. For deck slabs of bridges having skew angles greater than 20°, the codes require the minimum amount of reinforcement to be doubled in the end zones near the skew supports. Model testing has shown that need for such an increase can be eliminated by providing composite end diaphragms with high flexural rigidity in the horizontal plane. The proposed concept is tested on a model of fibre-reinforced concrete deck without steel reinforcement in which deficiencies in the confinement of the deck slab readily manifest themselves in form of a bending, rather than punching shear, failure. Key words: highway bridges, bridge decks, deck slabs, skew deck, skew bridges, fibre-reinforced concrete decks.


Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


2021 ◽  
pp. 136943322110015
Author(s):  
Akram S. Mahmoud ◽  
Ziadoon M. Ali

When glass fibre-reinforced polymer (GFRP) bar splices are used in reinforced concrete sections, they affect the structural performance in two different ways: through the stress concentration in the section, and through the configuration of the GFRP–concrete bond. This study experimentally investigated a new method for increasing the bond strength of a GFRP lap (two GFRP bars connected together) using a carbon fibre-reinforced polymer (CFRP) sheet coated in epoxy resin. A new splicing method was investigated to quantify the effect of the bar surface bond on the development length, with reinforced concrete beams cast with laps in the concrete reinforcing bars at a known bending span length. Specimens were tested in four-point flexure tests to assess the strength capacity and failure mode. The results were summarised and compared within a standard lap made according to the ACI 318 specifications. The new method for splicing was more efficient for GFRP splice laps than the standard lap method. It could also be used for head-to-head reinforcement bar splices with the appropriate CFRP lapping sheets.


2018 ◽  
Vol 18 (2) ◽  
pp. 610-620 ◽  
Author(s):  
Longwei Zhang ◽  
Hua Zhao ◽  
Eugene J OBrien ◽  
Xudong Shao

This article outlines a Virtual Monitoring approach for fatigue life assessment of orthotropic steel deck bridges. Bridge weigh-in-motion was used to calculate traffic loads which were then used to calculate “virtual” strains. Some of these strains were checked through long-term monitoring of dynamic strain data. Field tests, incorporating calibration with pre-weighed trucks and monitoring the response to regular traffic, were conducted at Fochen Bridge, which has an orthotropic steel deck and is located in Foshan City, China. In the calibration tests, a 45-t 3-axle truck ran repeatedly across Lane 2, the middle lane in a 3-lane carriageway. The results show that using an influence surface to weigh vehicles can improve the accuracy of the weights and, by inference, of remaining service life calculations. The most fatigue-prone position was found to be at the cutout in the diaphragms. Results show that many vehicles are overweight—the maximum gross vehicle weight recorded was 148 t, nearly 3.6 times heavier than the fatigue design truck.


Sign in / Sign up

Export Citation Format

Share Document