Thermal stability of ribosomes from a psychrophilic and a mesophilic yeast

1969 ◽  
Vol 15 (9) ◽  
pp. 1116-1118 ◽  
Author(s):  
C. H. Nash ◽  
D. W. Grant

Ribosomes from the obligately psychrophilic yeast, Candida gelida, are rendered completely non-functional after exposure to 40 C for 5 minutes. This heat-induced impairment of ribosomal function is characterized by a reduced capacity to bind charged sRNA and is accompanied by physical degradation. Ribosomes from the mesophilic yeast, Candida utilis, however, are functionally and physically unaffected when subjected to similar treatment. The dissimilar thermal stabilities may be attributed to marked differences in the ribonucleoproteins present in the two species.

2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


1998 ◽  
Vol 543 ◽  
Author(s):  
T. Çağin ◽  
Y. Zhou ◽  
E. S. Yamaguchi ◽  
R. Frazier ◽  
A. Ho ◽  
...  

AbstractTo understand antiwear phenomena in motor engines at the atomic level and provide evidence inselecting future ashless wear inhibitors, we studied the thermal stability of the self-assembled monolayer(SAM) model for dithiophosphate (DTP) and dithiocarbamate (DTC) molecules on the iron oxidesurface using molecular dynamics. The interactions for DTP, DTC and Fe2O3 are evaluated based on aforce field derived from fitting to ab initio quantum chemical calculations of dimethyl DTP (and DTC)and Fe(OH)2(H2O)2-DTP (DTC) clusters. MD simulations at constant-NPT are conducted to assesrelative thermal stabilities of the DTP and DTC with different pendant groups (n-propyl, i-propyl, npentyl.and i-pentyl). To investigate frictional process, we employ a steady state MD method, in whichone of the Fe2O3 slabs maintained at a constant linear velocity. We obtain the time averaged normaland frictional forces from the interatomic forces. Then, we calculated the friction coefficient at theinterface between SAMs of DTP and the confined lubricant, hexadecane, to assess the shear stability ofDTPs with different pendant groups.


1966 ◽  
Vol 101 (3) ◽  
pp. 721-726 ◽  
Author(s):  
SJ Martin

1. RNA has been prepared from baby hamster kidney cells by extraction with a phenol-EDTA mixture and further purified by passing through a column of Sephadex G-25 that had been equilibrated with water. 2. Aging of the total RNA extracts at 4 degrees or heating at 95 degrees followed by rapid cooling caused a conversion of 28s RNA into material sedimenting in sucrose gradients at approx. 18s. 3. When heated RNA was re-extracted with phenol the sedimentation profile was not returned to that of the unheated RNA. 4. The 28s and 18s RNA fractions were collected separately from sucrose gradients by precipitation with 2vol. of ethanol and passed through a Sephadex G-25 column equilibrated with water. 5. Heat treatment of purified 28s RNA at 95 degrees caused the sedimentation coefficient to increase to approx. 40s, whereas similar treatment of 18s RNA caused no significant increase. If the RNA was heated before the Sephadex G-25 treatment the sedimentation coefficient of the 28s and 18s RNA decreased to approx. 12s and 8s. 6. Heating mixtures of purified 28s and 18s RNA at 95 degrees caused some aggregation of 18s material with the 28s fraction.


1995 ◽  
Vol 405 ◽  
Author(s):  
F. Hyuga ◽  
T. Nittono ◽  
K. Watanabe ◽  
T. Furuta

AbstractThermal stabilities of GaAs/InGaP and InGaP/(In)GaAs interfaces are investigated using InGaP/(In)GaAs/InGaP single quantum wells. Annealing is performed at a temperature range between 600 and 900 °C for 10 min. Positions and the full widths at half maximum (FWHM) of photoluminescence (PL) peaks are almost identical to those of as-grown ones up to 800 °C. Blue shifts of PL peaks and increased widths of their FWHM observed after 900 °C annealing are suppressed by shortening the annealing time to 0.1 sec. Annealing at 900 ‘C for 0.1 sec is sufficient to activate Si ions implanted into (In)GaAs layers. As a result, these thermal stabilities are able to provide high reliability and high performance of InGaP/(In)GaAs heterostructure MESFET ICs.


2008 ◽  
Vol 23 (8) ◽  
pp. 2264-2274 ◽  
Author(s):  
J.J. Liang ◽  
H. Wei ◽  
G.C. Hou ◽  
Q. Zheng ◽  
X.F. Sun ◽  
...  

The temperature dependence of the thermal stability in a NiCoCrAlY coating alloy was examined by experimental observation and thermodynamic modeling in the 400–1200 °C temperature range. The results indicated that the thermal stabilities of primary β–NiAl, β–NiAl/α–Cr eutectic, and γ–Ni were slightly temperature dependent, but those of γ′–Ni3Al, σ–(Cr,Co,Ni), and α–Cr were strongly temperature dependent in the annealed NiCoCrAlY specimens. The temperature dependence of the thermal stabilities among γ′–Ni3Al, σ–(Cr,Co,Ni), and α–Cr might be ascribed to the σ → α transformation at ∼1100 °C and the γ′ → γ transformation at ∼800 °C. Further, using Thermocalc associated with TTNi7 database, thermodynamic equilibria were calculated. The modeling results were compared with the experimental results and found to be in reasonable agreement with the experimental observations of β–NiAl, σ–(Cr,Co,Ni), and γ′–Ni3Al. Some deviations observed are discussed in the light of both limited availability of thermodynamic data and experimental problems.


2012 ◽  
Vol 722 ◽  
pp. 77-86
Author(s):  
Zhuo Li ◽  
Stewart J. Wilkins ◽  
Kyoung Sik Moon ◽  
C.P. Wong

The effects of carbon nanotubes (CNTs) on the thermal stability of CNT/polymer nanocomposites are discussed using CNT/silicone composites as a model compound. Pristine CNTs can improve the thermal stability of polymer composites due to the high thermal stability of CNTs, their network structure and free radical scavenging capabilities. However, impurities such as metal catalyst residues and defects such as carboxylic acid functional groups in CNTs can lead to decreased thermal stability of CNT/silicone nanocomposites. Acid purification is an efficient way to remove metallic impurities and can enhance free radical scavenging capabilities. However, controlling the amount of oxidation is important to avoid acid catalyzed thermal degradation induced by carboxylic acid groups on CNT surfaces.


2013 ◽  
Vol 833 ◽  
pp. 317-321 ◽  
Author(s):  
Feng Zhan ◽  
Nan Chun Chen ◽  
Xiao Hu Zhang ◽  
Bin Huang ◽  
Zhi Neng Wu ◽  
...  

Mechanical properties, abrasion properties, thermal stabilities, and dynamic mechanical properties of poly (vinyl chloride) (PVC)/diatomite composites with different diatomite content prepared by melting blending were investigated. The results indicated that mechanical properties of composites have different performance due to diatomite participation, and the flexural modulus was improved. With an increase in diatomite, the abrasion resistance and thermal stability of composites were improved. Furthermore, the E' and Tg of composites could be enhanced effectively with diatomite participation. The optimum combined properties of PVC/diatomite composite were obtained with the adding of 40 phr diatomite.


2010 ◽  
Vol 89-91 ◽  
pp. 562-567
Author(s):  
P.H. Tsai ◽  
I.S. Huang ◽  
T.H. Li ◽  
Jason S.C. Jang ◽  
J.C. Huang ◽  
...  

Based on the thermodynamic calculation, two phase separated Zr-based BMGs (Zr63.8Ni16.2Cu15Al5 and Zr66Cu15.3Ni8.7Al10) which developed by the authors previous study were selected for investigating their crystallization behavior and thermal stabilities by means of differential scanning calorimetry (DSC), and X-ray diffractometry. The results show that the Zr66Cu15.3Ni8.7Al10 amorphous alloy exhibits higher GFA than the Zr63.8Ni16.2Cu15Al5 amorphous alloy. But the Zr63.8Ni16.2Cu15Al5 amorphous alloy presents higher activation energy of crystallization (227 kJ/mole and 188 kJ/mole for Zr63.8Ni16.2Cu15Al5 and Zr66Cu15.3Ni8.7Al10 BMGs, respectively). However, Zr66Cu15.3Ni8.7Al10 amorphous alloy contains less atomic percentage of Cu and Ni elements (with positive heat of mixing) may result in forming less volume phase separation as well less interface area between these separated amorphous phase. Overall, the Zr66Cu15.3Ni8.7Al10 amorphous alloy exhibits longer incubation time at higher annealing temperature in comparison with the Zr63.8Ni16.2Cu15Al5 amorphous alloy, suggesting that the amorphous alloy which contains fewer amounts of Cu and Ni elements would have better thermal stability.


Sign in / Sign up

Export Citation Format

Share Document