Effect of ethanol on the glucose-induced movements of protons across the plasma membrane of Saccharomyces cerevisiae NCYC 431

1987 ◽  
Vol 33 (2) ◽  
pp. 93-97 ◽  
Author(s):  
Jean-Regis Juroszek ◽  
Michel Feuillat ◽  
Claudine Charpentier

The study of glucose-induced proton fluxes in Saccharomyces cerevisiae NCYC 431 showed a decrease of proton net efflux by ethanol across the plasma membrane of energized cells. Furthermore a negative net proton efflux (an influx) occurred from a given ethanol concentration (between 1.3 and 1.5 M) whatever the experimental conditions used, thus allowing the definition of a nil–net exchange step where no net movement of protons across the plasma membrane could be observed. A new technique of ethanol tolerance determination in yeast based upon a correlation for the same ethanol concentration between both the collapse of the proton gradient and the growth cessation in cultures supplemented with ethanol after 8 h incubation was proposed. The defined method also showed a cumulated effect of temperature and ethanol on Saccharomyces cerevisiae NCYC 431.

2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


1994 ◽  
Vol 269 (26) ◽  
pp. 17705-17712
Author(s):  
S.K. Mahanty ◽  
U.S. Rao ◽  
R.A. Nicholas ◽  
G.A. Scarborough

Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Dimitrios Kontogiannatos ◽  
Vicky Troianou ◽  
Maria Dimopoulou ◽  
Polydefkis Hatzopoulos ◽  
Yorgos Kotseridis

Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.


Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 23-37 ◽  
Author(s):  
F Palladino ◽  
H L Klein

Abstract The hyper-gene conversion srs2-101 mutation of the SRS2 DNA helicase gene of Saccharomyces cerevisiae has been reported to suppress the UV sensitivity of rad18 mutants. New alleles of SRS2 were recovered using this suppressor phenotype. The alleles have been characterized with respect to suppression of rad18 UV sensitivity, hyperrecombination, reduction of meiotic viability, and definition of the mutational change within the SRS2 gene. Variability in the degree of rad18 suppression and hyperrecombination were found. The alleles that showed the severest effects were found to be missense mutations within the consensus domains of the DNA helicase family of proteins. The effect of mutations in domains I (ATP-binding) and V (proposed DNA binding) are reported. Some alleles of SRS2 reduce spore viability to 50% of wild-type levels. This phenotype is not bypassed by spo13 mutation. Although the srs2 homozygous diploids strains undergo normal commitment to meiotic recombination, this event is delayed by several hours in the mutant strains and the strains appear to stall in the progression from meiosis I to meiosis II.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199618
Author(s):  
Tran Quoc Toan ◽  
Tran Duy Phong ◽  
Dam Duc Tien ◽  
Nguyen Manh Linh ◽  
Nguyen Thi Mai Anh ◽  
...  

Sargassum is a genus of brown macroalgae in the class Phaeophyta, distributed widely in all oceans, including those of Vietnam. Species of this genus have been proven to possess diverse biological activities, such as antioxidant, anti-fungal, and anti-inflammatory, along with many benefits and applications for human health, including anti-diabetic, obesity, and thrombosis. These benefits arise from a diverse chemical composition, with compounds such as fucoidan, mannitol, and especially phlorotannin—a group of phenolic derivatives found predominantly in brown algae. In this study, we evaluated and optimized the factors that affected the extraction process of phlorotannins from Sargassum swartzii (Turn.) C. Ag., a common species of brown macroalgae in Vietnam. The process utilized ethanol and water as the solvent system, and the extraction process was assisted with the use of microwaves. To carry out optimization studies, Response Surface Methodology (RSM) was adopted according to a Central Composite Desisgn (CCD), taking four processing factors into consideration, ethanol concentration (%, v/v), extraction time (minutes), solvent/material ratio (v/w), and microwave output power (W) as independent variables. Phlorotannin concentration (mgPhE/g) and extract mass (mg) were regarded as optimization outcomes. Experimental conditions that produced the highest phlorotannin yield from 10 g of S. swartzii are as follows: Extraction time of 65 minutes, ethanol concentration of 52%, microwave output power of 613 W, and solvent/material ratio of 33/1 (v/w). These conditions corresponded to a phlorotannin concentration of 5.59 ± 0.11 mg PhE/g, and a total extract content of 27.88 ± 0.13 mg/g.


Sign in / Sign up

Export Citation Format

Share Document