In-furrow spray as a delivery system for plant growth-promoting rhizobacteria and other rhizosphere-competent bacteria

1991 ◽  
Vol 37 (8) ◽  
pp. 632-636 ◽  
Author(s):  
R. M. Zablotowicz ◽  
E. M. Tipping ◽  
F. M. Scher ◽  
M. Ijzerman ◽  
J. W. Kloepper

A series of greenhouse and field experiments were conducted to evaluate aqueous in-furrow spray techniques for inoculating crop plants with cell suspensions of rhizosphere-competent root-colonizing bacteria. Maximum root colonization of soybean or canola roots by strains of Serratia, Pseudomonas, and Bradyrhizobium occurred using log 8 colony-forming units (cfu)/mL in the spray in greenhouse conditions. Field experiments evaluating a dose reponse demonstrated that maximum soybean root colonization by strains of Serratia or Pseudomonas was achieved between log 7 and 8 cfu/mL, while root colonization by a Bacillus strain was not related to cell concentration in the spray suspension. Root colonization greater than log 4.5 cfu/g root fresh weight was achieved for most strains by in-furrow spray application of a suspension of log 8 cfu/mL at a rate of 10 mL/m for canola, soybean, and wheat, while root colonization of corn ranged from a maximum of log 3.4 to no recovery. In-furrow spray may be a useful method for inoculating plants with rhizosphere-competent bacteria for experimental purposes, thereby avoiding interactions of formulation. It may also have some value for commercial delivery of bacteria to agricultural crops when it is compatible with accepted agronomic practices. Key words: rhizosphere, plant growth promoting rhizobacteria, formulation, Pseudomonas, root colonization.

HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 816-822 ◽  
Author(s):  
Tuan Anh Le ◽  
Zoltán Pék ◽  
Sándor Takács ◽  
András Neményi ◽  
Hussein G. Daood ◽  
...  

Open field experiments were conducted to investigate the effects of plant growth promoting rhizobacteria (PGPR) biofertilizer on processing tomato, grown under three different irrigation regimes. The field effectiveness of rhizobacteria inoculation on total biomass, yield, water use efficiency (WUE), carotenoid, and ascorbic acid production was examined in 2015 and 2016. The experimental design used was randomized block and the number of replications was four for each treatment. There were three different irrigation regimes: rain-fed control (RF), deficit water supply (WS50), and optimum water supply (WS100), which was delivered by drip irrigation in accordance with daily evapotranspiration (ETc). The test was performed on the Uno Rosso F1 processing tomato hybrid. Red fruit were measured at harvest in August and high-performance liquid chromatography (HPLC) was used for analysis. We evaluated yield quantity and total carotenoids and their composition (lycopene and β-carotene) depending on water supplement in 2 years. The marketable yield varied between 14.7 t·ha−1 and 126.9 t·ha−1 depending on treatment. The average soluble solids content (SSC) of the treatments ranged from 3.0 to 8.4. The total carotenoid yields of the treatments ranged from 0.8 to 40.4 kg·ha−1 and the average lycopene yield of the treatments ranged from 0.6 to 34.1 kg·ha−1. The effect of PGPR treatment was clearly positive for harvested yield, but this effect only prevailed under irrigated conditions.


HortScience ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 563-567 ◽  
Author(s):  
Huseyin Karlidag ◽  
Ertan Yildirim ◽  
Metin Turan ◽  
Mucahit Pehluvan ◽  
Figen Donmez

The effect of selected plant growth-promoting rhizobacteria (PGPR) on the growth, chlorophyll content, nutrient element content, and yield of strawberry plants under natural field salinity conditions stress was investigated. Field experiments were conducted using a randomized complete block design with five PGPRs (Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37, and Kocuria erythromyxa EY43) and a control (no PGPR) in 2009 and 2010. PGPR inoculations significantly increased the growth, chlorophyll content, nutrient element content, and yield of strawberry plants. PGPR treatments lowered electrolyte leakage of plants under saline conditions. The leaf relative water content (LRWC) of plants rose with bacterial inoculation. All nutrient element contents of leaves and roots investigated were significantly increased with PGPR inoculations with the exception of sodium (Na) and chlorine (Cl). The highest efficiency to alleviate salinity stress on the yield and nutrient uptake of strawberry plants was obtained from EY43 (228 g per plant) and EY37 (225 g per plant) treatment and the yield increasing ratio of plants was 48% for EY43 and 46% for EY 37 compared with the control treatment (154 g per plant). The highest nitrogen (N), potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), and iron (Fe) concentrations were obtained from EY43 and followed by E6, E37, and E30, and increasing ratio of leaves and root N, P, K, Ca, Mg, S, Mn, Cu, and Fe contents were 22% to 33%, 34% to 8.8%, 89% to 11%, 11.0% to 7.2%, 5.1% to 6.2%, 97% to 65%, 120% to 140%, 300% to 15%, and 111% to 9.0%, respectively. The results of the study suggested that PGPR inoculations could alleviate the deleterious effects of salt stress conditions on the growth and yield of strawberry plants under salinity conditions.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 142 ◽  
Author(s):  
Mohammad Hassan ◽  
John McInroy ◽  
Joseph Kloepper

Rhizodeposits, root exudates, and root border cells are vital components of the rhizosphere that significantly affect root colonization capacity and multiplication of rhizosphere microbes, as well as secretion of organic bioactive compounds. The rhizosphere is an ecological niche, in which beneficial bacteria compete with other microbiota for organic carbon compounds and interact with plants through root colonization activity to the soil. Some of these root-colonizing beneficial rhizobacteria also colonize endophytically and multiply inside plant roots. In the rhizosphere, these components contribute to complex physiological processes, including cell growth, cell differentiation, and suppression of plant pathogenic microbes. Understanding how rhizodeposits, root exudates, and root border cells interact in the rhizosphere in the presence of rhizobacterial populations is necessary to decipher their synergistic role for the improvement of plant health. This review highlights the diversity of plant growth-promoting rhizobacteria (PGPR) genera, their functions, and the interactions with rhizodeposits in the rhizosphere.


Three bacterial species of plant growth promoting rhizobacteria (PGPR) namely Paenibacillus polymyxa, Methylobacterium mesophilicum and Methylobacterium radiotolerans were tested alone or combined with humic acid as bio-control agents against the citrus nematode Tylenchulus semipenetrans under laboratory and field conditions. Results cleared that; all tested PGPR species produced IAA, HCN, ammonia, chitinase and protease enzymes and also solubilized phosphate in laboratory. P. polymyxa emphasized the superiority among other species in all PGPR properties except for phosphate solubilization, whereas M. radiotolerans showed highest amount of phosphorus solubilized in culture media. On the other hand, the results of the nematode survey conducted on orange, Citrus sinensis L. cv Balady grown in different localities of Ismailia and Sharkia Governorates during season 2019, revealed the presence of seven genera and species of plant-parasitic nematodes. Among which, T. semipenetrans occurred in all examined samples (100% frequency of occurrence) with a relatively high population density of 2330 and 2640 infected juveniles (J2) /250 g soil in Ismailia and Sharkia Governorates, respectively. Field experiments were conducted in two different locations, at Ismailia and Sharkia Governorates to assess the effectiveness of PGPR strains alone or combined to reduce the numbers of T. semipenetrans during season 2019. It was found that, all treatments caused significant (P≤0.05) reduction in T. semipenetrans population, compared to control treatment. The nematicide, Nemathorin® 10% G followed by P. polymyxa (20 L.fed-1 ) + foliarspraying of M. mesophilicm (5 L.fed-1 ) gave the highest efficacy in controlling the citrus nematode. Percentage reduction in numbers of J2/250g soil and adult females/1g roots for these treatments in Ismailia Governorate were 91% (85.7%) and 91.4% (89.5%), respectively. While the parallel values in Sharkia Governorate were 90% (87%) and 94% (90%), respectively. The combination of P. polymyxa and humic acid (20 L.fed-1 ) with foliar spraying of M. mesophilicm (5 L.fed-1 ) gained the third position. All treatments increased the fruit yield compared to control treatment. The highest percentages of increase were determined with Nemathorin (160% and 206%) followed by P. polymyxa + Humic acid (20 L.fed-1 ) + foliar spraying of M. mesophilicum (155.7% and 193%) and M. radiotolerans + P. polymyxa + foliar spraying of M. mesophilicum (153% and182%) in Ismailia, and Sharkia Governorates respectively.


2015 ◽  
Vol 2 (1) ◽  
pp. 677 ◽  
Author(s):  
Sarjiya Antonius ◽  
Tirta Kumala Dewi ◽  
M. Osaki

<p>To initiate the decomposition process need decomposer inoculants and an easily available nutrient as C sources (sugar, carbohydrate) and N sources (protein, N inorganic fertilizer). Fresh organic materials are suitable sources for all nutrient needed. Cattle manure or Urea is important N sources for the initiation of composting process. Charcoal – Ash is referring the entire remnants of a wood/bamboo burning fire. In reality, what remains after a typical fire in a bamboo or wood burning stove or fireplace is both ash and charcoal. Both ash and charcoal can offer tremendous benefits to the compost and garden soil. In order to enhance the decomposition processes and its quality of compost, addition of other valuable materials are necessary. Therefore preliminary study of synergy of biochar for composting was conducted. The field experiments were conducted in Terantang village, Sampit-Central Kalimantan and laboratory analysis were conducted in the laboratory of ecology and physiology of microorganisms, Reserach Center for Biology Cibinong. The parameters measured were the number of plant growth promoting rhizobacteria after composting and the C/N ratio of the compost. Those all parameters were compared with natural composting (control). The significant higher number of PGPR and better quality of final compost of treated biochar were observed. In this paper, more detail the effect of biochar on composting, its quality of compost and their effect on sorghum nursery will be discussed. </p><p><strong>Keywords</strong>: biochar, compost, plant growth promoting rhizobacteria, sorghum</p>


2017 ◽  
Vol 9 (2) ◽  
pp. 1008-1011
Author(s):  
Narinder Singh ◽  
Guriqbal Singh ◽  
Navneet Aggarwal

This study investigates the economic returns of lentil (Lens culinaris Medikus) by the use of phosphorus and biofertilizers [Rhizobium and plant growth promoting rhizobacteria (PGPR)] in Indian Punjab. The field experiments were conducted during Rabi 2013-14 and 2014-15 with combinations of four levels of phosphorus (0, 20, 30 and 40 kg P2O5 ha-1) and two/four biofertilizer treatments [uninoculated control and Rhizobium (LLR 12) + PGPR (RB 2)] in 2013-14, and uninoculated control, Rhizobium, PGPR and Rhizobium + PGPR in 2014-15) by replicating thrice. The use of 40 kg P2O5 ha-1 provided the highest gross returns whereas net returns and B:C were highest at 30 kg P2O5 ha-1. The combination of Rhizobium + PGPR + 40 kg P2O5 ha-1 provided the highest gross returns (Rs. 45902) whereas Rhizobium + PGPR+ 20 kg P2O5 ha-1 provided the highest net returns (Rs 20620). Furthermore, the integrated use of Rhizobium + PGPR + 20 kg P2O5 ha-1 provided higher net returns (Rs 20620) and B:C (1.88) as compared to sole application of 40 kg P2O5 ha-1 (Rs 18792 and 1.72). Thus, there was a net saving of 20 kg P2O5 ha-1 with the use of Rhizobium + PGPR inoculation without sacrificing the economics returns.


Sign in / Sign up

Export Citation Format

Share Document