The interaction of the soft rot bacterium Pseudomonas gladioli pv. agaricicola with Japanese cultivated mushrooms

1997 ◽  
Vol 43 (7) ◽  
pp. 639-648 ◽  
Author(s):  
Warwick M. Gill ◽  
Akihiko Tsuneda

The mushroom soft rot bacterium Pseudomonas gladioli pv. agaricicola was observed to cause pitting when inoculated onto tissues of several commercially important Japanese cultivated mushrooms. Scanning electron microscope studies demonstrated the sequential removal of hyphal wall layers, thereby exposing the chitin skeletal matrix, which in turn was degraded. A second type of damage typified by collapsed, shriveled, and in some cases lysed hyphal cells was also observed. Culture plate assays revealed that Pseudomonas gladioli pv. agaricicola produces chitinase and this, coupled with earlier evidence of a β-glucanase enzyme, accounted for the degradative ability of the pathogen. The gelatinous coating on the Pholiota nameko sporocarp appeared to confer resistance to Pseudomonas gladioli pv. agaricicola attack. Petri dish coincubations with several cultivated mushroom species indicated the ability of Pseudomonas gladioli pv. agaricicola to inhibit mycelial growth over a large distance and suggested the presence of a toxin or toxins. Owing to its wide host range, Pseudomonas gladioli pv. agaricicola is considered as a potential threat, not only to the mushroom industry in Japan but also to the mushroom industry in other tropical/subtropical countries.Key words: chitinase, disease, Pseudomonas gladioli pv. agaricicola, soft rot, toxin.

2021 ◽  
Vol 247 (5) ◽  
pp. 1249-1262 ◽  
Author(s):  
Mirosław Mleczek ◽  
Anna Budka ◽  
Marek Siwulski ◽  
Patrycja Mleczek ◽  
Sylwia Budzyńska ◽  
...  

AbstractThe multi-elemental composition of 4 edible wild-growing mushroom species that commonly occur in Polish forests was compared to 13 cultivated mushroom species available in trade. A considerable variation in the macroelements content was revealed with cultivated species containing higher amounts of macroelements. The mean content of B, Co, Cr, Fe, Pb, Pr, Pt, Sb, Sm, Sr, Te, and Tm was higher in cultivated mushroom species, while the opposite was noted for Ba, Cd, Cu, Hg, La, Mo, Sc, and Zn. Selected cultivated forms exhibited increased content of Al (F. velutipes), As (H. marmoreus, F. velutipes), Ni (P. ostreatus, A. polytricha, H. marmoreus), and Pb (P. ostreatus, A. polytricha, F. velupites, and L. edodes). Wild-growing species, B. boletus, I. badia, and S. bovinus contained high Hg levels, close to or exceeding tolerable intakes. Compared to cultivated mushrooms, they also generally revealed a significantly increased content of Al (with the highest content in B. edulis and I. badia), As and Cd (with the highest content in B. edulis and S. bovinus in both cases). In turn, the cultivated mushrooms were characterized by a higher content of Ni (particularly in A. bisporus) and Pb (with the highest content in P. eryngii). The exposure risks may, however, differ between wild and cultivated mushrooms since the former are consumed seasonally (although in some regions at a high level), while the latter are available throughout the year. Both cultivated and wild-growing mushrooms were found to be a poor source of Ca and Mg, and only a supplemental source of K, Cu, Fe, and Zn in the human diet. These results suggest that mushrooms collected from the wild or cultivated, should be consumed sparingly. The study advocates for more strict monitoring measures of the content of toxic metals/metalloids in mushrooms distributed as food, preferentially through the establishment of maximum allowance levels not limited only to a few elements and mushroom species.


Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 575-575 ◽  
Author(s):  
Neelima Garg ◽  
Om Prakash ◽  
B. K. Pandey ◽  
B. P. Singh ◽  
G. Pandey

Indian gooseberry (Emblica officinalis Gaertn.) is a medicinal plant with high nutraceutical value. During November and December 2003, soft rot was noticed on harvested and stored (20 ± 5°C and 65 ± 5% relative humidity) fruits at the experimental farm in Rehmanhera, Lucknow, India (26°50′N, 80°54′E). These fruits had numerous, minute brown necrotic lesions showing white mycelial growth. A pronounced halo of water-soaked, faded tissue surrounded the lesion between the fringe of mycelium and healthy tissues. The rotted surface was covered with a black, powdery layer of spores. On Czapek yeast extract agar, fungal colonies were blackish grey, moderately dense, and covered the entire petri dish. The fungus produced aseptate mycelium. The sporangial heads were 30 to 50 μm in diameter with sporangiospores found linearly within cylindrical sacs (merosporangia) borne on spicules around the columella. Sporangiospores, spherical to cylindrical in shape and borne in chains, measured 3.0 to 5.0 μm long. The fungus was morphologically and physiologically identified as Syncephalastrum racemosum Schr. (2). For pathogenicity tests, healthy fruits (10 replicates) were surface sterilized and punctured inoculated aseptically with 1.0 × 106 conidia and incubated at 20 ± 5°C Typical symptoms of the disease appeared after 4 days. The fungus exhibited a strong level of cellulolytic activity as indicated by prolific growth on Indian gooseberry fiber waste under solid-state fermentation conditions. The level of cellulase activity (1) was 21 filter paper activity unit per ml at 72 hr in culture supernatant of basal medium having carboxymethyl cellulose as the carbon source. The fungus showed resistance to tannins (as much as 2%), since it could grow well in liquid growth medium (Czapek Dox broth) with 2% tannins and aonla juice with 1.8% tannins. Since Indian gooseberry is rich in fiber (2.5 to 3.4%) and tannins (1.5 to 2.0%), this may be an important pathogen. To our knowledge, this is the first report of the occurrence of Syncephalastrum racemosum on Indian gooseberry fruits. References: (1) T. K. Ghose. Pure Appl. Chem. 59(2):257, 1987. (2) J. I. Pitt and A. D. Hocking. Fungi and Food Spoilage. Academic Press. North Ryde, Australia, 1985.


2010 ◽  
Vol 25 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Natasa Duduk ◽  
Aleksa Obradovic ◽  
Mirko Ivanovic

Effects of the volatile phase of thyme, cinnamon and clove essential oils on Colletotrichum acutatum were investigated. Mycelial disc was placed in the center of the Petri dish (V=66 ml) containing PDA. Different volumes of either non- or ethanol-diluted essential oils were placed on the inner side of the dish cover to obtain final concentrations of 153, 107, 76, 46, 15, 14, 12, 11, 7.6, 3.82, 1.53, 0.153 and 0.0153 ?l/L of air. The dishes were sealed with Parafilm and incubated in up-side-down position. After 7 days of incubation, mycelial growth was recorded by measuring the colony diameter. If no mycelial growth was recorded, the disc was transferred to a new PDA plate in order to evaluate whether the activity was either fungistatic or fungicidal. Mean growth values were obtained and then converted to inhibition percentage of mycelial growth compared with the control treatment. All the tested essential oils inhibited mycelial growth of C. acutatum in the dose dependent manner. Mycelial growth was totally inhibited by thyme oil in the concentration of 76 ?l/L of air. The same results were obtained by cinnamon and clove oil in the concentration of 107 ?l/L of air. Thyme and cinnamon oil had fungicidal effect in concentrations of 107 and 153 ?l/L respectively. The results obtained provide evidence on the antifungal in vitro effect of the tested essential oils as potential means for the control of C. acutatum.


2013 ◽  
Vol 43 (4) ◽  
pp. 460-466 ◽  
Author(s):  
Rosane Fátima Baldiga Tonin ◽  
Aveline Avozani ◽  
Anderson Luiz Durante Danelli ◽  
Erlei Melo Reis ◽  
Sandra Maria Zoldan ◽  
...  

Black root rot, caused by Macrophomina phaseolina (Tass.) Goid., is the most common root disease in soybean fields. This study aimed to determine the in vitro mycelial sensitivity, measured by the IC50 (concentration to inhibit 50% of the fungus mycelial growth) of a M. phaseolina isolate obtained from soybean, to different fungicides (thiram, iprodione, carbendazim, pyraclostrobin, fluquinconazol, tolyfluanid, metalaxyl and penflufen + trifloxystrobin), at six concentrations (0.01 mg L-1, 0.10 mg L-1, 1.00 mg L-1, 10.00 mg L-1, 20.00 mg L-1 and 40.00 mg L-1 of the active ingredient). The 0.00 mg L-1 concentration represented the control, without fungicide addition. The mycelial growth evaluation was performed with the aid of a digital pachymeter, by measuring the colonies diameter, when the fungus growth in the control treatment reached the Petri dish edge. The experimental design was completely randomized, with four replications. Concerning the fungitoxicity of active ingredients, a variation from non-toxic to highly fungitoxic was observed to the M. phaseolina isolate, with IC50 values ranging from 0.23 mg L-1 to > 40.00 mg L-1, being carbendazim the most efficient one (IC50 = 0.23 mg L-1). The fungus showed insensitivity to the active ingredients of fluquinconazole, metalaxyl, thiram and tolyfluanid.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1457-1461 ◽  
Author(s):  
X. Chen ◽  
M. D. Ospina-Giraldo ◽  
V. Wilkinson ◽  
D. J. Royse ◽  
C. P. Romaine

Since the early 1990s, the epidemic of green mold on the cultivated mushroom Agaricus bisporus in North America has been caused by Trichoderma aggressivum f. aggressivum. The findings of earlier research suggested that the microevolutionary emergence of T. aggressivum f. aggressivum coincided with the onset of the epidemic. This hypothesis was tested further by determining the disease susceptibility of mushroom strains grown widely before the epidemic manifested. The results of complementary methods of analysis, which entailed a grain protection assay and cropping trials, established that two pre-epidemic strains were more susceptible to green mold than three post-epidemic strains being cultivated at the time of the epidemic. Thus, if T. aggressivum f. aggressivum had been present within cultivated mushrooms prior to the epidemic, it should have been detected. It still appears to be true that T. aggressivum f. aggressivum emerged during the 1990s in a manner that remains unclear.


Author(s):  
Maria Luísa Mendes Rodrigues ◽  
Edson Hiydu Mizobutsi ◽  
Paola Junayra Lima Prates ◽  
Paula Virgínia Leite Duarte ◽  
Regina Cássia Ferreira Ribeiro ◽  
...  

Aims: The aim of this study was to evaluate the in vitro effect of different phosphite formulations and concentrations on the development of Colletotrichum musae. Sample: to evaluate the inhibition of germination, mycelial growth and sporulation of Colletotrichum musae. Study Design:  Treatments were conducted in a completely randomized design, with 4 replicates, each replicate consisting of 1 Petri dish. Place and Duration of Study:  Laboratory of Post-Harvest Pathology, State University of Montes Claros, between March and October 2017. Methodology: Three different phosphite formulations were used: FCu1 (4% Cu + 20% P2O5), FCu2 (4% Cu + 22% P2O5) at concentrations of 0.5;1.0; 1.5 and 2.0 mL L-1 and FK (42% P2O5 + 27.7% K2O) at concentrations of 0.5; 1.0; 1.5 and 2.0 mg.L-1. Products were incorporated into the respective culture media. Culture medium alone and culture medium + imazalil were used as controls. Petri dishes were housed in BOD chamber at 25°C under a 12 hours photoperiod. Results: Results were submitted to analysis of variance and regression, and means were compared by the Tukey test (P <0.05). Control was compared to the other treatments by the Dunnet's test (P <0.05). Among the tested phosphite formulations, copper and potassium phosphites were found to reduce the mycelial growth of Colletotrichum musae. FCu2 presents a fungicide-like effect from the concentration of 0.5 m.L-1 in the control of conidia production. As for the FCu1, a fungicide-like effect was observed in the control of germination from the concentration of 1.5 mL.L-1. Conclusion: A significant fungistatic effect was observed between the concentrations of the products in the mycelial growth, sporulation and germination obtaining control of up to 100% of the development of C. musae. Copper phosphites were as effective as fungicide in inhibiting fungal development.


2021 ◽  
Vol 7 (11) ◽  
pp. 894
Author(s):  
Zuzanna Magdziak ◽  
Monika Gąsecka ◽  
Kinga Stuper-Szablewska ◽  
Marek Siwulski ◽  
Sylwia Budzyńska ◽  
...  

A cultivated mushroom species, Pleurotus citrinopileatus, is becoming increasingly popular thanks to its attractive colour and medicinal properties. In this study, P. citrinopileatus was grown in a cultivation medium enriched with wheat bran (WB), thymus post-extraction waste (TPEW) and pumpkin post-extraction waste (PPEW) products. The study showed that the post-extraction wastes are a crucial factor determining the accumulation of minerals, the content/profile of low-molecular-weight organic acids (LMWOAs) and phenolic compounds in fruit bodies, thereby increasing their nutritional value. The use of the waste materials significantly increased LMWOAs contents. The sum of LMWOAs under all cultivation mediums increased, especially quinic, malic and citric acids under the 20% PPEW, 25 and 50% TPEW addition. Total phenolic content, phenolic content, as well as the composition and scavenging effect on DPPH radicals, were strongly dependent on the used substrate. The control variant was poor in phenolic compounds, while the supplementation increased the contents and diversity of these metabolites. In the control, only four phenolic compounds were quantified (chlorogenic, gallic, syringic and vanillic acids), while in the supplemented substrates up to 14 different phenolic compounds (caffeic, chlorogenic, p-coumaric, 2,5-dihydroxybenzoic acid, ferulic, gallic, protocatechuic, salicylic, sinapic, syringic, trans-cinnamic and vanillic acids, catechin and rutin).


2018 ◽  
Vol 243 (7) ◽  
pp. 639-644 ◽  
Author(s):  
Anne-Mari Mustonen ◽  
Maija Määttänen ◽  
Vesa Kärjä ◽  
Katri Puukka ◽  
Jari Aho ◽  
...  

Rhabdomyolysis (destruction of striated muscle) is a novel form of mushroom poisoning in Europe and Asia indicated by increased circulating creatine kinase levels. Particular wild fungi have also been reported to induce elevated creatine kinase activities in mice. Flammulina velutipes (enokitake or winter mushroom) is one of the most actively cultivated mushroom species globally. As it is marketed as a medicinal mushroom and functional food, it is important to examine whether it could induce potentially harmful health effects similar to some previously studied edible fungi. The present study examined the effects of F. velutipes consumption on the plasma clinical chemistry, hematology, and organ histology of laboratory mice. Wild F. velutipes were dried, pulverized, mixed with a regular laboratory rodent diet, and fed to the animals at 0, 3, 6, or 9 g/kg body mass/day for five days ( n = 6/group). F. velutipes consumption caused increased activities of plasma creatine kinase and the MB-fraction of creatine kinase at 6–9 g/kg/d, indicating potentially deleterious effects on both skeletal and cardiac muscle. The plasma total and high-density lipoprotein cholesterol concentrations (at 9 g/kg/d) and white blood cell and lymphocyte counts (at 6–9 g/kg/d) decreased. Although the cholesterol-lowering properties of F. velutipes can be beneficial, the previously unexamined, potentially hazardous side effects of mushroom consumption (myo- and cardiotoxicity) should be thoroughly investigated before recommending this mushroom species as a health-promoting food item. Impact statement This work is important to the field of functional foods, as it provides novel information about the potential myo- and cardiotoxic properties of an edible mushroom, Flammulina velutipes. The results are useful and of importance because F. velutipes is an actively cultivated mushroom and marketed as a health-promoting food item. The findings contribute to the understanding of the complexity of the balance between the beneficial and potentially harmful effects of mushroom consumption.


2017 ◽  
Vol 45 (2) ◽  
pp. 498-506 ◽  
Author(s):  
Agnieszka JASIŃSKA ◽  
Luiza DAWIDOWICZ ◽  
Marek SIWULSKI ◽  
Patryk KILINOWSKI

Digestate is remaining material after anaerobic digestion (AD) of a biodegradable feedstock. The AD process produces two main products: digestate and biogas; digestate is considered as a waste; however, it found application in agriculture i.e. as a soil conditioner or cultivation substrate component. Digestate is rich in nitrogen and phosphorus and can be used as a substrate component for mycelial growth of mushrooms. Aim of the study was examination of agar media supplementation with digestate from AD of foodwaste material on mycelial growth of cultivated and medicinal mushrooms. Mycelial growth of four mushroom species was investigated: Coprinus comatus, Ganoderma lucidum; Agaricus subrufescens and Laetiporus sulphureus. First experiment investigated four mushroom species and 3 digestate-only based agar media with growing amount of digestate extract. Later fastest growing mushrooms from exp. 1, C. comatus and G. lucidum, was chosen, mycelial growth was performed on 2 digestate-only based agar media and 2 what/digestate extract based agar media. Wheat-based and manure-based agar media was used as control medium. Study confirmed positive effect of digestate from AD as an addition or main component of agar media culture for mushroom mycelium growth. The amount of digestate extract affected mycelial growth of investigated species. The best agar media was digestate-based only with 25 g of extract and wheat/digestate based (150/50 g extract). The fastest and the best growth were obtained for C. comatus. The residue from AD biogas production could have found additional application as media product for mushroom mycelia production and further as a component for mushroom cultivation substrate.


Sign in / Sign up

Export Citation Format

Share Document