AMINO ACIDS IN THE BLOOD AND URINE OF NORMAL AND ARTHRITIC SUBJECTS BEFORE AND AFTER A GLYCINE LOAD GIVEN WITH AND WITHOUT ADRENOCORTICOTROPIN

1957 ◽  
Vol 35 (11) ◽  
pp. 1005-1016 ◽  
Author(s):  
J. B. Derrick ◽  
Audrey P. Hanley

Observations have been made on the specific free amino acids (chromatographic analysis) and other nitrogenous constituents in the serum and urine of normal and arthritic men under controlled dietary conditions, before and after a glycine load and adrenocorticotropin administered separately and together.Differences in the metabolism of amino acids between normal individuals and arthritics, particularly of alanine, proline, glutamic acid, taurine, and possibly tyrosine (and/or tryptophan) and cystine, were apparent. The differences were largely confined to the non-essential amino acids. Concomitant increases seen in the serum levels and in the excretion of several amino acids, in response to a load of a single amino acid, indicate that the increases in excretion are more than a matter of competition for reabsorption in the kidney. A prerenal phenomenon appears to be involved, possibly interconversion of amino acids. This concept is supported by the evidence that the increases in the serum levels were restricted to the non-essential amino acids.

1957 ◽  
Vol 35 (1) ◽  
pp. 1005-1016 ◽  
Author(s):  
J. B. Derrick ◽  
Audrey P. Hanley

Observations have been made on the specific free amino acids (chromatographic analysis) and other nitrogenous constituents in the serum and urine of normal and arthritic men under controlled dietary conditions, before and after a glycine load and adrenocorticotropin administered separately and together.Differences in the metabolism of amino acids between normal individuals and arthritics, particularly of alanine, proline, glutamic acid, taurine, and possibly tyrosine (and/or tryptophan) and cystine, were apparent. The differences were largely confined to the non-essential amino acids. Concomitant increases seen in the serum levels and in the excretion of several amino acids, in response to a load of a single amino acid, indicate that the increases in excretion are more than a matter of competition for reabsorption in the kidney. A prerenal phenomenon appears to be involved, possibly interconversion of amino acids. This concept is supported by the evidence that the increases in the serum levels were restricted to the non-essential amino acids.


2021 ◽  
Author(s):  
André Nogueira Alves ◽  
Carla M Sgrò ◽  
Matthew D Piper ◽  
Christen K Mirth

Nutrition shapes a broad range of life history traits, ultimately impacting animal fitness. A key fitness-related trait, female fecundity is well known to change as a function of diet. In particular, the availability of dietary protein is one of the main drivers of egg production, and in the absence of essential amino acids egg laying declines. However, it is unclear whether all essential amino acids have the same impact on phenotypes like fecundity. Using a holidic diet, we fed adult female D. melanogaster diets that contain all necessary nutrients except one of the 10 essential amino acids and assessed the effects on egg production. For most essential amino acids, depleting a single amino acid induced as rapid a decline in egg production as when there were no amino acids in the diet. However, when either methionine or histidine were excluded from the diet, egg production declined more slowly. Next, we tested whether GCN2 and TOR were involved in this difference in response across amino acids. While mutations in GCN2 did not eliminate the differences in the rates of decline in egg laying among amino acid drop-out diets, we found that inhibiting TOR signalling caused egg laying to decline rapidly for all drop-out diets. TOR signalling does this by regulating the yolk-forming stages of egg chamber development. Our results suggest that amino acids differ in their ability to induce signalling via the TOR pathway. This is important because if phenotypes differ in sensitivity to individual amino acids, this generates the potential for mismatches between the output of a pathway and the animal's true nutritional status.


1976 ◽  
Vol 36 (2) ◽  
pp. 219-230
Author(s):  
P. G. Lunn ◽  
R. G. Whitehead ◽  
B. A. Baker

1. Free amino acid concentrations in the plasma have been compared with those in liver and quadriceps muscle, in rats fed on diets containing 209 (control) and 31 (low-protein) g protein/kg. The effects of the low-protein diet on diurnal variations in these values were also measured.2. In the plasma, the total amino acid concentration was significantly lower in animals given the low-protein diet, at all times of day except 12.00 hours. In the liver, and to a lesser extent the muscle, total amino acid concentration was maintained.3. In the control animals, diurnal variation in the concentrations of both essential and non-essential amino acids was very similar in plasma, liver and muscle. In animals given the low-protein diet, although the same diurnal pattern was maintained for non-essential amino acids, that occurring among the essential amino acids had virtually disappeared.4. In plasma, the mean 24 h concentration of essential amino acids decreased from 24· mmol/l in control animals to only 1·29 mmol/l in the low-protein-fed animals. Concentrations in muscle and liver were reduced by a similar proportion (from 8·6 to 5·56 μmol/g and from 8·67 to 5·05 μmol/g respectively). Conversely the concentrations of non-essential amino acids in animals given the low-protein diet were increased in plasma (from 1·53 to 2·00 mmol/l), muscle (from 12·5 to 14·3 μmol/g), and liver (from 16·8 to 20·5 μmol/g), muscle showing the lowest increase.5. With the exceptions of lysine, threonine, cystine and tyrosine, the concentrations of all other essential amino acids were reduced more in liver than in muscle. The relationship between this and the failure to maintain plasma albumin concentrations is discussed.


2020 ◽  
Vol 78 (Supplement_3) ◽  
pp. 79-85
Author(s):  
Kenji Nagao ◽  
Takeshi Kimura

Abstract This paper reviews developments regarding the use of plasma-free amino acid (PFAA) profiles as biomarkers for detecting and predicting disease risk. This work was initiated and first published in 2006 and was subsequently developed by Ajinomoto Co., Inc. After commercialization in 2011, PFAA-based tests were adopted in over 1500 clinics and hospitals in Japan, and numerous clinician-led studies have been performed to validate these tests. Evidence is accumulating that PFAA profiles can be used for diabetes prediction and evaluation of frailty; in particular, decreased plasma essential amino acids could contribute to the pathophysiology of severe frailty. Integration of PFAA evaluation as a biomarker and effective essential amino acid supplementation, which improves physical and mental functions in the elderly, could facilitate the development of precision nutrition, including personalized solutions. This present review provides the background for the technology as well as more recent clinical findings, and offers future possibilities regarding the implementation of precision nutrition.


1982 ◽  
Vol 48 (3) ◽  
pp. 519-526 ◽  
Author(s):  
J. R. Mercer ◽  
E. L. Miller

1. The effect of supplementing barley diets with urea (U), extracted decorticated groundnut meal (GNM) or Peruvian fish meal (PFM) on plasma free amino acid concentrations in sheep have been examined and the first limiting amino acid has been indicated by measuring the changes in the concentration of the plasma essential amino acids (PEAA) during a rumen infusion of a volatile fatty acid (VFA) mixture.2. Three wethers fitted with rumen and re-entrant duodenal cannulas were given isonitrogenous, isoenergetic diets containing (g/kg dry matter (DM)) U 20, GNM 106 or PFM 78, the crude protein (nitrogen × 6.25) contents being 139, 145 and 148 respectively. The sheep were fed hourly, the mean daily dm intake being 0.634 kg.3. Plasma concentrations of valine, threonine, lysine, isoleucine and leucine were linearly related to their concentrations in duodenal digesta.4. A VFA mixture was infused into the rumen for 6 h to supply (mmol/min) acetate 1.47, propionate 0.22 and n-butyrate 0.27. Blood samples were taken 6 h before, during and 12 h after the end of the infusion.5. The concentration of all PEAA decreased relative to the pre-infusion and post-infusion controls but there were no significant differences between diets.6. The mean decreases in concentration averaged over all three diets showed that the decrease in concentration of methionine (41.5%) was far greater than for any other essential amino acid suggesting that under these conditions methionine was the first limiting amino acid.


1978 ◽  
Vol 54 (1) ◽  
pp. 51-60 ◽  
Author(s):  
J. Bergström ◽  
P. Fürst ◽  
L.-O. Norée ◽  
E. Vinnars

1. Free amino acids were determined in the plasma and in the muscle tissue of 14 patients with chronic uraemia; eight were not on dialysis and six were having regular peritoneal dialysis. The concentration of each amino acid in muscle water was calculated with the chloride method. 2. In both groups of patients there were low intracellular concentrations of threonine, valine, tyrosine and carnosine, and high glycine/valine and phenylalanine/tyrosine ratios. Both groups of patients had increased amounts of 1- and 3-methylhistidine in plasma and in muscle water. 3. The non-dialysed patients had low intracellular concentrations of lysine, and the dialysed patients had high intracellular concentrations of lysine, isoleucine, leucine and of some of the non-essential amino acids. 4. After peritoneal dialysis for 22 h, the plasma concentration of several amino acids decreased but the intracellular concentrations of most amino acids did not change significantly. 5. Intravenous administration of essential amino acids and histidine during the last 4 h of dialysis increased in muscle the total free amino acids, the ratio of essential to non-essential amino acids and the valine and phenylalanine concentrations. 6. The results demonstrated that the plasma and muscle concentrations of several amino acids are grossly abnormal in chronic uraemia. Non-dialysed and dialysed patients exhibit important differences, especially in the intracellular amino acid patterns. Infusion of essential amino acids may result in enhancement of protein synthesis.


1983 ◽  
Vol 50 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Kyu-Il Kim ◽  
James I. Elliott ◽  
Henry S. Bayley

1. The catabolism of [14C]phenylalanine was used to indicate the effects of varying the dietary level of lysine and threonine on the retention of dietary amino acids by 2-week-old pigs receiving diets containing skim milk and a mixture of free amino acids.2. Reducing the dietary level of lysine from 16 to 12 g/kg had no influence on phenylalanine oxidation, reducing the lysine level from 12 to 11 then to 10 g/kg caused an almost linear increase in phenylalanine oxidation whereas further reduction to 9 or 8 g/kg resulted in a less-marked increase in phenylalanine oxidation. This showed that 12 g lysine/kg was required to maximize amino acid retention and indicated that lysine was conserved more effectively at low dietary concentrations than at dietary concentrations approaching the requirement.3. Reducing the dietary level of threonine from 8 to 6 g/kg had no influence on phenylalanine oxidation, whereas further reduction to 4 g/kg caused a linear increase in phenylalanine catabolism showing that 6 g threonine/kg was required to maximize amino acid retention.4. Reduction of the levels of lysine, threonine and methionine from the generous levels characteristic of a diet containing 240 g protein from skim milk/kg, to the requirement levels determined separately in the presence of the generous levels of all the other amino acids, resulted in a twofold increase in phenylalanine catabolism. This shows that the pig seems able to conserve limiting intakes of a single amino acid, but not if the intakes of two or three amino acids are limiting.


1996 ◽  
Vol 271 (4) ◽  
pp. E733-E741 ◽  
Author(s):  
P. Tessari ◽  
R. Barazzoni ◽  
M. Zanetti ◽  
M. Vettore ◽  
S. Normand ◽  
...  

Whether tracers of different essential amino acids yield the same estimates of body protein turnover is still uncertain. Therefore, we have simultaneously determined leucine (Leu; using [14C]Leu), phenylalanine (Phe; using [13C]Phe), and tyrosine (Tyr; using [2H2]Tyr) rates of appearance (Ra) from proteolysis (PD), as well as Leu and Phe disposal, into protein synthesis (PS) both before and after an anabolic stimulus in healthy volunteers. Protein anabolism was stimulated by insulin plus a branched-chain amino acid-enriched aromatic amino acid-deficient amino acid solution, which increased Leu (from 145 +/- 9 to 266 +/- 10 mumol/l) but decreased Phe (from 57 +/- 2 to 46 +/- 3) and Tyr (from 58.7 +/- 5.5 to 21.0 +/- 2.2) concentrations. Postabsorptive endogenous Leu Ra (2.04 +/- 0.12 mumol.kg-1.min-1), Phe Ra (0.66 +/- 0.03), and Tyr Ra (0.45 +/- 0.06), as well as rates of PS determined with the leucine (1.65 +/- 0.10 mumol.kg-1.min-1) and the phenylalanine tracer (0.57 +/- 0.03), agreed well with the known abundance of these amino acids in body protein(s). After insulin and amino acids, PD was suppressed (P < 0.001) using all tracers. However, although percent suppression of endogenous Leu Ra (-->1.49 +/- 0.10 mumol.kg-1.min-1, 26 +/- 5%) and Phe Ra (-->0.53 +/- 0.02 mumol.kg-1.min-1, -20 +/- 2%) were comparable, endogenous Tyr Ra was suppressed to a larger extent (-->0.23 +/- 0.02 mumol.kg-1.min-1, -46 +/- 3% P = 0.038). PS was stimulated using the Leu (+24 +/- 7%, P < 0.02) but not the Phe (+6 +/- 4%, not significant) data. We conclude that isotopes of different essential amino acid: provide comparable estimates of PD and PS in the postabsorptive state. However, their responses to an anabolic stimulus may differ, possibly depending on exogenous amino acid availability and/or the resulting plasma levels.


1989 ◽  
Vol 62 (1) ◽  
pp. 77-89 ◽  
Author(s):  
T. C. Wang ◽  
M. F. Fuller

A series of four nitrogen-balance experiments was carried out with growing pigs to determine the optimum balance amongst the amino acids in the diet. The reduction in N retention when 20 % of a single amino acid was removed from the diet was used to calculate a dietary amino acid pattern in which each amino acid would he equally limiting. A mixture of amino acids simulating the amino acid pattern of casein was used with the same efficiency as casein. From two successive deletion experiments an optimum balance amongst the essential amino acids was derived. Expressed relative to lysine = 100 this had threonine 72, valine 75, methionine + cystine 63, isoleucine 60, leucine 110, phenylalanine + tryosine 120, tryptophan 18. No estimate was made for histidine. Essential amino acids in this pattern were mixed with non-essential amino acids in ratios of 36:64 up to 57:43. The highest efficiency of N retention was achieved with diets having a ratio of at least 45:55. This included (g/16 g N) lysine 6 5, threonine 4.7, valine 4 9, methionine + cystine 4.1, isoleucine 3 9, leucine 7.2, phenylalanine + tyrosine 7.8, tryptophan 12. The N of diets with this amino acid pattern was utilized significantly better than when the pattern proposed by the Agricultural Research Council (1981) was used. The flow of amino acids past the terminal ileum of pigs given the semi-synthetic diet with this amino acid pattern was no greater than that observed with protein-free diets. The proposed pattern thus describes the intrinsic requirements of the growing pig for absorbed amino acids.


1996 ◽  
Vol 76 (2) ◽  
pp. 231-248 ◽  
Author(s):  
G. E. Lobley ◽  
P. J. M. Weijs ◽  
A. Connell ◽  
A. G. Calder ◽  
D. S. Brown ◽  
...  

Changes in splanchnic energy and N metabolism were studied in sheep, prepared with vascular catheters across the portal-drained viscera (PDV) and the Liver, and maintained on supramaintenance intakes of either grass or grass + barley pellets. The animals were challenged, on both diets, with 4 d intra- mesenteric vein infusions of NH4CI (25 µmol/min) plus NH4HCO3(at either 0 or 125 µmol/min). On the final day of each treatment the natural abundance NH4Cl was replaced with15NH4Cl over a 10 h infusion while over the same period [l-13C]leucine was infused via a jugular vein. Measurements were made of blood flow plus mass transfers of NH3, urea, free amino acids and O2, across the PDV and liver. Enrichments of [14N15N]urea and [15N15N]urea plus [15N]glutamine, aspartate and glutamate were also monitored. Whole-body urea flux was determined by infusion of [14C]urea. At the end of the study the animals were infused for 3 h with15NH4CI, killed and liver samples assayed for intracellular free amino acid enrichments and concentrations. Blood flows across the splanchnic region were unaffected by either diet or level of ammonium salt infusion. At the lower ammonium salt infusion there was a trend for greater absorption of NH3across the PDV (P<0·10) with grass + barley than with the grass diet, while removal of urea was unaltered. At the higher ammonium salt infusions there was a significantly greater appearance of NH, across the PDV and this exceeded the extra infused. Urea-N removal, however, was also elevated and by more than that required to account for the additional NH3. The PDV contributed 19–28% to whole-body O2consumption and the liver 23–32%. Hepatic extraction of absorbed NH3was complete on all treatments and systemic pH remained constant. The fractions of urea-N apparently derived from NH3, were similar on the grass (0·59–0·64) and grass + barley (0·64–0·67) diets. Hepatic production of urea agreed well with urea flux measurements. Between the two levels of ammonium salt infusion and within diets the additional NH3removed across the PDV was accounted for by the increased urea-N production. The [14N15N]: [15N15N] ratio of the urea produced was 97:3, while the enrichment of hepatic intracellular free aspartate was lower than that of [14N15N]urea. Glutamine enrichments were 0·23–0·37 those of [14N15N]urea, indicating a minor role for those hepatocytes (probably perivenous) which contain glutamine synthetase (EC6.3.1.2). Leucine kinetics, either for the whole body or splanchnic tissues, were not different between diets or level of ammonium salt infusion, except for oxidation which was less on the grassfbarley ration. Amino acid concentrations were lower on the grass + barley diet but net PDV absorptions were similar. The pattern of essential amino acids absorbed into the PDV showed good agreement with the published composition of mixed rumen microbial protein. Fractional disappearances of absorbed free essential amino acids across the liver varied from 0·4 (branched chains) to near unity (histidine, phenylalanine)


Sign in / Sign up

Export Citation Format

Share Document