scholarly journals Use of plasma-free amino acids as biomarkers for detecting and predicting disease risk

2020 ◽  
Vol 78 (Supplement_3) ◽  
pp. 79-85
Author(s):  
Kenji Nagao ◽  
Takeshi Kimura

Abstract This paper reviews developments regarding the use of plasma-free amino acid (PFAA) profiles as biomarkers for detecting and predicting disease risk. This work was initiated and first published in 2006 and was subsequently developed by Ajinomoto Co., Inc. After commercialization in 2011, PFAA-based tests were adopted in over 1500 clinics and hospitals in Japan, and numerous clinician-led studies have been performed to validate these tests. Evidence is accumulating that PFAA profiles can be used for diabetes prediction and evaluation of frailty; in particular, decreased plasma essential amino acids could contribute to the pathophysiology of severe frailty. Integration of PFAA evaluation as a biomarker and effective essential amino acid supplementation, which improves physical and mental functions in the elderly, could facilitate the development of precision nutrition, including personalized solutions. This present review provides the background for the technology as well as more recent clinical findings, and offers future possibilities regarding the implementation of precision nutrition.

1978 ◽  
Vol 14 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Anders Alvestrand ◽  
Jonas Bergström ◽  
Peter Fürst ◽  
Guna Germanis ◽  
Ulla Widstam

Author(s):  
Ozlem Oz ◽  
Ismail Koyuncu ◽  
Ataman Gonel

Background: Neurofibromatosis, also known as Von Recklinghausen disease, is a systemic and progressive genetic disease that primarily affects the skin, eyes, nervous system and bones. The disease can occur in a variety of ways and can vary from individuals. Metabolomic-based research using blood samples has enabled new diagnostic methods to be used in the diagnosis of various diseases, especially cancer. Among metabolites, profiling of plasma free amino acids (PFAA) is a promising approach because PFAAs bind all organ systems and play an important role in metabolism. Objective: This study aimed to determine the characteristics of PFAA profiles in neurofibromatosis patients and the possibility of using them for early detection and treatment of the disease. Method: Patients with a diagnosis of Neurofibromatosis Type I confirmed by genetic analysis and healthy individuals of the same age group without any disease were included in the study. We analysed the nineteen plasma free amino acids (phenylalanine, proline, threonine, arginine, asparagine, cystine, valine, glutamate, tyrosine, serine, glutamine, glycine, tryptophane, leucine, lysine, methionine, isoleucine, aspartate and alanine) from neurofibromatosis Type I patients and control group by liquid chromatography tandem mass spectrometry (LC-MS/MS) in Metabolism Laboratory of Harran University Research and Application Hospital. The results of the plasma free amino acid levels were divided into 3 groups as essential, semi-essential and non-essential. The differences of amino acid levels between groups were determined. Results: Eight amino acid levels (methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate) were significantly altered in patients with neurofibromatosis type 1. In essential amino acids, methionine levels were significantly higher in the patient group than the control group. While the levels of arginine and glutamine in semi-essential amino acids were statistically significantly higher in the patient group, a significant decrease was observed in cystine and proline levels compared to the control group's amino acid levels. In non-essential amino acids group, asparagine, serine and aspartate amino acid levels were significantly higher in the patient group compared to the control group. Conclusion: The current research predicates that eight amino acids, nsmely methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate can be considered to be valuable biomarkers for neurofibromatosis type I. This present study is the first to build models for neurofibromatosis Type I screening using plasma free amino acids and the amino acid profile will guide the predicting of the complications that may occur during the course of the disease.


1976 ◽  
Vol 36 (2) ◽  
pp. 219-230
Author(s):  
P. G. Lunn ◽  
R. G. Whitehead ◽  
B. A. Baker

1. Free amino acid concentrations in the plasma have been compared with those in liver and quadriceps muscle, in rats fed on diets containing 209 (control) and 31 (low-protein) g protein/kg. The effects of the low-protein diet on diurnal variations in these values were also measured.2. In the plasma, the total amino acid concentration was significantly lower in animals given the low-protein diet, at all times of day except 12.00 hours. In the liver, and to a lesser extent the muscle, total amino acid concentration was maintained.3. In the control animals, diurnal variation in the concentrations of both essential and non-essential amino acids was very similar in plasma, liver and muscle. In animals given the low-protein diet, although the same diurnal pattern was maintained for non-essential amino acids, that occurring among the essential amino acids had virtually disappeared.4. In plasma, the mean 24 h concentration of essential amino acids decreased from 24· mmol/l in control animals to only 1·29 mmol/l in the low-protein-fed animals. Concentrations in muscle and liver were reduced by a similar proportion (from 8·6 to 5·56 μmol/g and from 8·67 to 5·05 μmol/g respectively). Conversely the concentrations of non-essential amino acids in animals given the low-protein diet were increased in plasma (from 1·53 to 2·00 mmol/l), muscle (from 12·5 to 14·3 μmol/g), and liver (from 16·8 to 20·5 μmol/g), muscle showing the lowest increase.5. With the exceptions of lysine, threonine, cystine and tyrosine, the concentrations of all other essential amino acids were reduced more in liver than in muscle. The relationship between this and the failure to maintain plasma albumin concentrations is discussed.


1957 ◽  
Vol 35 (1) ◽  
pp. 1005-1016 ◽  
Author(s):  
J. B. Derrick ◽  
Audrey P. Hanley

Observations have been made on the specific free amino acids (chromatographic analysis) and other nitrogenous constituents in the serum and urine of normal and arthritic men under controlled dietary conditions, before and after a glycine load and adrenocorticotropin administered separately and together.Differences in the metabolism of amino acids between normal individuals and arthritics, particularly of alanine, proline, glutamic acid, taurine, and possibly tyrosine (and/or tryptophan) and cystine, were apparent. The differences were largely confined to the non-essential amino acids. Concomitant increases seen in the serum levels and in the excretion of several amino acids, in response to a load of a single amino acid, indicate that the increases in excretion are more than a matter of competition for reabsorption in the kidney. A prerenal phenomenon appears to be involved, possibly interconversion of amino acids. This concept is supported by the evidence that the increases in the serum levels were restricted to the non-essential amino acids.


1957 ◽  
Vol 35 (11) ◽  
pp. 1005-1016 ◽  
Author(s):  
J. B. Derrick ◽  
Audrey P. Hanley

Observations have been made on the specific free amino acids (chromatographic analysis) and other nitrogenous constituents in the serum and urine of normal and arthritic men under controlled dietary conditions, before and after a glycine load and adrenocorticotropin administered separately and together.Differences in the metabolism of amino acids between normal individuals and arthritics, particularly of alanine, proline, glutamic acid, taurine, and possibly tyrosine (and/or tryptophan) and cystine, were apparent. The differences were largely confined to the non-essential amino acids. Concomitant increases seen in the serum levels and in the excretion of several amino acids, in response to a load of a single amino acid, indicate that the increases in excretion are more than a matter of competition for reabsorption in the kidney. A prerenal phenomenon appears to be involved, possibly interconversion of amino acids. This concept is supported by the evidence that the increases in the serum levels were restricted to the non-essential amino acids.


1979 ◽  
Vol 56 (5) ◽  
pp. 427-432 ◽  
Author(s):  
P. Möller ◽  
J. Bergström ◽  
S. Eriksson ◽  
P. Fürst ◽  
K. Hellström

1. The concentrations of electrolytes and free amino acids in plasma and the quadriceps femoris muscle were studied in ten apparently healthy elderly men, 52–77 years of age. The results were compared with those previously recorded for men 20–36 years old. 2. The two groups of subjects did not differ with regard to serum electrolytes and intracellular water content but the extracellular water in the older subjects exceeded that of the younger group by about 50%. The muscle specimens of the elderly men were also characterized by a 40% elevation of their total contents of Na+ and Cl−, whereas the content of K+ and Mg2+ was almost identical in both groups. 3. The means recorded for the plasma concentrations of most amino acids tended to be higher in the elderly men. The differences reached statistical significance for tyrosine, histidine, valine, lysine and total essential amino acids. In keeping with the findings in plasma, the amino acid concentrations in the muscle of the older group tended to exceed those of the younger ones. The difference reached statistical significance with regard to total amino acids, essential and non-essential amino acids, aspartate, alanine, citrulline, histidine, arginine, leucine and lysine. The various mechanisms that may contribute to these findings are discussed.


1971 ◽  
Vol 11 (53) ◽  
pp. 619 ◽  
Author(s):  
W Turner ◽  
GG Payne

High protein wheat was the sole cereal in 20 and 25 per cent crude protein broiler starter diets. On the. 25 per cent protein diet, performance was maximized without amino acid supplementation. Using high protein wheat in 20 per cent protein diets, growth rate was improved by l-lysine supplementation of 0.3 per cent. However, this growth rate was not at a maximum level. Some other dietary factor was necessary, and this did not appear to be essential amino acids, singly or in combination.


1982 ◽  
Vol 48 (3) ◽  
pp. 519-526 ◽  
Author(s):  
J. R. Mercer ◽  
E. L. Miller

1. The effect of supplementing barley diets with urea (U), extracted decorticated groundnut meal (GNM) or Peruvian fish meal (PFM) on plasma free amino acid concentrations in sheep have been examined and the first limiting amino acid has been indicated by measuring the changes in the concentration of the plasma essential amino acids (PEAA) during a rumen infusion of a volatile fatty acid (VFA) mixture.2. Three wethers fitted with rumen and re-entrant duodenal cannulas were given isonitrogenous, isoenergetic diets containing (g/kg dry matter (DM)) U 20, GNM 106 or PFM 78, the crude protein (nitrogen × 6.25) contents being 139, 145 and 148 respectively. The sheep were fed hourly, the mean daily dm intake being 0.634 kg.3. Plasma concentrations of valine, threonine, lysine, isoleucine and leucine were linearly related to their concentrations in duodenal digesta.4. A VFA mixture was infused into the rumen for 6 h to supply (mmol/min) acetate 1.47, propionate 0.22 and n-butyrate 0.27. Blood samples were taken 6 h before, during and 12 h after the end of the infusion.5. The concentration of all PEAA decreased relative to the pre-infusion and post-infusion controls but there were no significant differences between diets.6. The mean decreases in concentration averaged over all three diets showed that the decrease in concentration of methionine (41.5%) was far greater than for any other essential amino acid suggesting that under these conditions methionine was the first limiting amino acid.


1978 ◽  
Vol 54 (1) ◽  
pp. 51-60 ◽  
Author(s):  
J. Bergström ◽  
P. Fürst ◽  
L.-O. Norée ◽  
E. Vinnars

1. Free amino acids were determined in the plasma and in the muscle tissue of 14 patients with chronic uraemia; eight were not on dialysis and six were having regular peritoneal dialysis. The concentration of each amino acid in muscle water was calculated with the chloride method. 2. In both groups of patients there were low intracellular concentrations of threonine, valine, tyrosine and carnosine, and high glycine/valine and phenylalanine/tyrosine ratios. Both groups of patients had increased amounts of 1- and 3-methylhistidine in plasma and in muscle water. 3. The non-dialysed patients had low intracellular concentrations of lysine, and the dialysed patients had high intracellular concentrations of lysine, isoleucine, leucine and of some of the non-essential amino acids. 4. After peritoneal dialysis for 22 h, the plasma concentration of several amino acids decreased but the intracellular concentrations of most amino acids did not change significantly. 5. Intravenous administration of essential amino acids and histidine during the last 4 h of dialysis increased in muscle the total free amino acids, the ratio of essential to non-essential amino acids and the valine and phenylalanine concentrations. 6. The results demonstrated that the plasma and muscle concentrations of several amino acids are grossly abnormal in chronic uraemia. Non-dialysed and dialysed patients exhibit important differences, especially in the intracellular amino acid patterns. Infusion of essential amino acids may result in enhancement of protein synthesis.


2012 ◽  
Vol 108 (S2) ◽  
pp. S333-S336 ◽  
Author(s):  
Gertjan Schaafsma

PDCAAS is a widely used assay for evaluating protein quality. It is a chemical score, which is derived from the ratio between the first limiting amino acid in a test protein and the corresponding amino acid in a reference amino acid pattern and corrected for true faecal N digestibility. Chemical scores exceeding 100 % are truncated to 100 %. The advantages of the PDCAAS are its simplicity and direct relationship to human protein requirements. The limitations are as follows: the reference pattern is based on the minimum amino acid requirements for tissue growth and maintenance and does not necessarily reflect the optimum intake. Truncated PDCAAS of high-quality proteins do not give any information about the power of these proteins to compensate, as a supplement, for low levels of dietary essential amino acids in low-quality proteins. It is likely that faecal N digestibility does not take into account the loss from the colon of indispensable amino acids that were not absorbed in the ileum. Anti-nutritional factors, such as lectins and trypsin inhibitors, in several plant protein sources can cause heightened endogenous losses of amino acids, an issue which is particularly relevant in animal feedstuffs. The assumption that amino acid supplementation can completely restore biological efficiency of the protein source is incorrect since the kinetics of digestion and absorption between supplemented free amino acids and amino acids present in dietary proteins, are different.


Sign in / Sign up

Export Citation Format

Share Document