scholarly journals Synthesis of hydroxycinnamoyl shikimates and their role in monolignol biosynthesis

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dharshana Padmakshan ◽  
Vitaliy I. Timokhin ◽  
Fachuang Lu ◽  
Paul F. Schatz ◽  
Ruben Vanholme ◽  
...  

Abstract Hydroxycinnamoyl shikimates were reported in 2005 to be intermediates in monolignol biosynthesis. 3-Hydroxylation of p-coumarate, originally thought to occur via coumarate 3-hydroxylase (C3H) from p-coumaric acid or its CoA thioester, was revealed to be via the action of coumaroyl shikimate 3′-hydroxylase (C3′H) utilizing p-coumaroyl shikimate as the substrate, itself derived from p-coumaroyl-CoA via hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase (HCT). The same HCT was conjectured to convert the product, caffeoyl shikimate, to caffeoyl-CoA to continue on the pathway starting with its 3-O-methylation. At least in some plants, however, a more recently discovered caffeoyl shikimate esterase (CSE) enzyme hydrolyzes caffeoyl shikimate to caffeic acid from which it must again produce its CoA thioester to continue on the monolignol biosynthetic pathway. HCT and CSE are therefore monolignol biosynthetic pathway enzymes that have provided new opportunities to misregulate lignification. To facilitate studies into the action and substrate specificity of C3H/C3′H, HCT, and CSE enzymes, as well as for metabolite authentication and for enzyme characterization, including kinetics, a source of authentic substrates and products was required. A synthetic scheme starting from commercially available shikimic acid and the four key hydroxycinnamic acids (p-coumaric, caffeic, ferulic, and sinapic acid) has been developed to provide this set of hydroxycinnamoyl shikimates for researchers.

1959 ◽  
Vol 37 (1) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


1959 ◽  
Vol 37 (4) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


2017 ◽  
Vol 44 (No. 4) ◽  
pp. 178-185 ◽  
Author(s):  
Alina Kałużewicz ◽  
Jolanta Lisiecka ◽  
Monika Gąsecka ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski ◽  
...  

This study was conducted to study the influence of plant density and irrigation on the content of phenolic compounds, i.e., phenolic acids and flavonols in cv. ‘Sevilla’ cauliflower curds. Levels of phenolic acids and flavonols were in the range of 3.0–6.2 mg and 25.4–87.8 mg/100 g of dry weight, respectively, depending on plant density and irrigation. Of the phenolic acids, caffeic acid was detected in the highest amount, followed by p-coumaric acid, sinapic acid, gallic acid, and ferulic acid. Of the two flavonols detected, the levels of quercetin were higher than those of kaempferol. The content of the detected phenolic acids (with the exception of ferulic acid) and both flavonols increased with increasing plant density. Furthermore, the concentration of phenolic compounds (with the exception of ferulic acid) was significantly higher under irrigation.


2011 ◽  
Vol 94 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Anna Bogucka-Kocka ◽  
Katarzyna Szewczyk ◽  
Magdalena Janyszek ◽  
Sławomir Janyszek ◽  
Łukasz Cieśla

Abstract Eighteen species belonging to the Carex genus were checked for the presence and the amount of eight phenolic acids (p-hydroxybenzoic, vanillic, caffeic, syringic, protocatechuic, p-coumaric, sinapic, and ferulic) by means of HPLC. Both the free and bonded phenolic acids were analyzed. The majority of the analyzed acids occurred in the studied species in relatively high amounts. The highest concentrations found were caffeic acid and p-coumaric acid, for which the detected levels were negatively correlated. A very interesting feature was the occurrence of sinapic acid, a compound very rarely detected in plant tissues. Its distribution across the analyzed set of species can be hypothetically connected with the humidity of plants' habitats. Several attempted tests of aggregative cluster analysis showed no similarity to the real taxonomical structure of the genus Carex. Thus, the phenolic acids' composition cannot be considered as the major taxonomical feature for the genus Carex.


1967 ◽  
Vol 45 (9) ◽  
pp. 1451-1457 ◽  
Author(s):  
Oluf L. Gamborg

Studies were made on the biosynthesis of chlorogenic acid and on lignin formation in potato cells from suspension cultures. The cells were incubated with14C-labelled compounds, and the degree of incorporation into chlorogenic acid and into lignin were measured. Shikimic acid and quinic acid were not readily absorbed by the cells, whereas cinnamic acid, p-coumaric acid, and caffeic acid were absorbed very quickly. The results show that quinic acid and caffeic acid can serve as direct precursors of chlorogenic acid in the cells. A large proportion of the14C from the aromatic compounds was incorporated into the alcohol-insoluble fraction, and was associated with a Klason lignin. The lignin aldehydes obtained after nitrobenzene oxidation of the alcohol-insoluble material consisted of p-hydroxybenzaldehyde, vanillin, and trace amounts of syringaldehyde.


2006 ◽  
Vol 188 (7) ◽  
pp. 2666-2673 ◽  
Author(s):  
Martin Berner ◽  
Daniel Krug ◽  
Corina Bihlmaier ◽  
Andreas Vente ◽  
Rolf Müller ◽  
...  

ABSTRACT The saccharomicins A and B, produced by the actinomycete Saccharothrix espanaensis, are oligosaccharide antibiotics. They consist of 17 monosaccharide units and the unique aglycon N-(m,p-dihydroxycinnamoyl)taurine. To investigate candidate genes responsible for the formation of trans-m,p-dihydroxycinnamic acid (caffeic acid) as part of the saccharomicin aglycon, gene expression experiments were carried out in Streptomyces fradiae XKS. It is shown that the biosynthetic pathway for trans-caffeic acid proceeds from l-tyrosine via trans-p-coumaric acid directly to trans-caffeic acid, since heterologous expression of sam8, encoding a tyrosine ammonia-lyase, led to the production of trans-p-hydroxycinnamic acid (coumaric acid), and coexpression of sam8 and sam5, the latter encoding a 4-coumarate 3-hydroxylase, led to the production of trans-m,p-dihydroxycinnamic acid. This is not in accordance with the general phenylpropanoid pathway in plants, where trans-p-coumaric acid is first activated before the 3-hydroxylation of its ring takes place.


Open Biology ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 190215 ◽  
Author(s):  
Richard A. Dixon ◽  
Jaime Barros

Lignin is a major component of secondarily thickened plant cell walls and is considered to be the second most abundant biopolymer on the planet. At one point believed to be the product of a highly controlled polymerization procedure involving just three potential monomeric components (monolignols), it is becoming increasingly clear that the composition of lignin is quite flexible. Furthermore, the biosynthetic pathways to the major monolignols also appear to exhibit flexibility, particularly as regards the early reactions leading to the formation of caffeic acid from coumaric acid. The operation of parallel pathways to caffeic acid occurring at the level of shikimate esters or free acids may help provide robustness to the pathway under different physiological conditions. Several features of the pathway also appear to link monolignol biosynthesis to both generation and detoxification of hydrogen peroxide, one of the oxidants responsible for creating monolignol radicals for polymerization in the apoplast. Monolignol transport to the apoplast is not well understood. It may involve passive diffusion, although this may be targeted to sites of lignin initiation/polymerization by ordered complexes of both biosynthetic enzymes on the cytosolic side of the plasma membrane and structural anchoring of proteins for monolignol oxidation and polymerization on the apoplastic side. We present several hypothetical models to illustrate these ideas and stimulate further research. These are based primarily on studies in model systems, which may or may not reflect the major lignification process in forest trees.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 536
Author(s):  
Huimin Yong ◽  
Yunpeng Liu ◽  
Dawei Yun ◽  
Shuai Zong ◽  
Changhai Jin ◽  
...  

Hydroxycinnamic acids are one category of bioactive phenolic acids that are widely distributed in plants. In this study, chitosan (CS) was functionalized with three kinds of hydroxycinnamic acids (p-coumaric acid, caffeic acid and ferulic acid) through the carbodiimide-mediated grafting method. The obtained hydroxycinnamic-acid-grafted CSs (hydroxycinnamic acid-g-CSs) were further fabricated into food packaging films through solvent casting. For the first time, the functionalities of the different hydroxycinnamic acid-g-CS films were compared. Results showed the grafting ratio of p-coumaric acid-g-CS, caffeic acid-g-CS and ferulic acid-g-CS was 73.68, 129.42 and 91.75 mg/g, respectively. Instrumental analyses confirmed hydroxycinnamic acids conjugated with CS through amide and ester bonds. The functionalization of CS film with hydroxycinnamic acids produced a more compact microstructure and higher UV light barrier ability, mechanical strength, water vapor barrier ability, thermal stability and antioxidant and antimicrobial activities. Among the different hydroxycinnamic acid-g-CS films, caffeic acid-g-CS film presented the strongest barrier, mechanical, antioxidant and antimicrobial properties. Moreover, caffeic acid-g-CS film packaging effectively extended the shelf life of pork to 10 days at 4 °C. Our results suggest caffeic acid-g-CS film can be used in the active food packaging field.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 511-520 ◽  
Author(s):  
Bernhard Schuster ◽  
Michael Winter ◽  
Karl Herrmann

Protocatechuic acid-4-, gallic acid-4-, caffeic acid-4-, ferulic acid- and p-coumaric acid-O-β-ᴅ-glucoside were synthesized. These substances were characterized by UV, 1H NMR, 13C NMR and FAB-MS. Their proportions in berry fruit and vegetable were determined by means of HPLC and capillary GC.


Sign in / Sign up

Export Citation Format

Share Document