Isolation of tremerogens A-9291-I and A-9291-II, novel sex hormones of Tremella brasiliensis

1983 ◽  
Vol 61 (7) ◽  
pp. 796-801 ◽  
Author(s):  
Yoshihiro Ishibashi ◽  
Youji Sakagami ◽  
Akira Isogai ◽  
Akinori Suzuki ◽  
Robert J. Bandoni

Two hormones, tremerogens A-9291-I and A-9291-II, that induce conjugation tube formation in a-type cells of Tremella brasiliensis were isolated from the culture filtrate of A-type cells. Both hormones are peptides and they have similar amino acid compositions. The N-terminal amino acids of these peptides are aspartic acid or asparagine.

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


1964 ◽  
Vol 42 (6) ◽  
pp. 755-762 ◽  
Author(s):  
David B. Smith

An outline of present ideas concerning the arrangement, folding, and chemistry of the polypeptide chains of hemoglobin is given with some references to present know ledge of myoglobin.New material includes a partial amino acid sequence of the β-chain of horse hemoglobin, details concerning the amino acids lining the heme pocket of horse hemoglobin, and the effects of carboxypeptidases A and B on horse oxy- and horse deoxy-hemoglobin. The kinetics of the latter reactions are not simple. The C-terminal amino acids are released more rapidly from the oxygenated form.


1970 ◽  
Vol 119 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Laxman S. Desai ◽  
George E. Foley

Histones F2al extracted from normal and neoplastic cells possess similar amino acid compositions. Tryptic and chymotryptic peptides of the F2al histones have identical chromato-electrophoretic RF values. It is concluded that histones F2al from various sources have similar overall structures. The observed differences in the ratios of ∈-N-monomethyl- and di-∈-N-methyl-lysine in the histones from normal and neoplastic cells may be of significance with respect to gene regulation.


2019 ◽  
Vol 17 (1) ◽  
pp. 313-324 ◽  
Author(s):  
Marta Pikosz ◽  
Joanna Czerwik-Marcinkowska ◽  
Beata Messyasz

AbstractFilamentous green algae (FGA) frequently forms dense mats which can be either mono- or polyspecies. While various defense mechanisms of competition in algae are known, little is known about the interactions between different species of FGA. An experiment in controlled laboratory conditions was conducted to gather data on the changes in amino acids (AA) concentrations in FGA species in the presence of exudates from different other species. The aim of the present study was to identify the AA whose concentrations showed significant changes and to assess if the changes could be adaptation to stress conditions. The major constituents of the AA pool in Cladophora glomerata, C. fracta and Rhizoclonium sp. were Glutamic acid (Glu), Aspartic acid (Asp) and Leucine (Leu). In response to chemical stress, that is the increasing presence of exudates, a significant increase in the concentrations Proline (Pro) and Tryptophan (Trp) was noted. The increase in Proline levels was observed in C. fracta and Rhizoclonium in response to chemical stress induced by C. glomerata exudates. As the concentration of exudates increased in the medium, there was a progressive shift in the pattern of AA group in FGA.


1985 ◽  
Vol 40 (7-8) ◽  
pp. 527-530
Author(s):  
Günter Döhler ◽  
Joachim Zink

Abstract The marine diatoms Bellerochea yucatanensis and Thalassiosira rotula were grown at different salinities (20/25, 35, and 40/45‰ salinity (S), respectively) under normal air (0.035 vol.% CO2). No significant variations in the percentage of gross photosynthetic products (e.g. total amino acids, sugar phosphates) were found as a function of salinity during growth. The bulk of the soluble 14C-radioactivity was detected in amino acids. 14C-labelling of glutamine increased markedly with salinity. Low salt - grown algae are characterized by enhanced amino acid pools, mainly of aspartic acid, asparagine and glutamine. It was found that the tested amino acids are not involved in osmoregulation.


2003 ◽  
Vol 374 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Zhonghua LIU ◽  
Anna ZOLKIEWSKA ◽  
Michal ZOLKIEWSKI

Deletion of a single glutamate in torsinA correlates with early-onset dystonia, the most severe form of a neurological disorder characterized by uncontrollable muscle contractions. TorsinA is targeted to the ER (endoplasmic reticulum) in eukaryotic cells. We investigated the processing and membrane association of torsinA and the dystonia-associated Glu-deletion mutant (torsinAΔE). We found that the signal sequence of torsinA (residues 1–20 from the 40 amino-acid long N-terminal hydrophobic region) is cleaved in Drosophila S2 cells, as shown by the N-terminal sequencing after partial protein purification. TorsinA is not secreted from S2 cells. Consistently, sodium carbonate extraction and Triton X-114 treatment showed that torsinA is associated with the ER membrane in CHO (Chinese-hamster ovary) cells. In contrast, a variant of torsinA that contains the native signal sequence without the hydrophobic region Ile24–Pro40 does not associate with the membranes in CHO cells, and a truncated torsinA without the 40 N-terminal amino acids is secreted in the S2 culture. Thus the 20-amino-acid-long hydrophobic segment in torsinA, which remains at the N-terminus after signal-peptide cleavage, is responsible for the membrane anchoring of torsinA. TorsinAΔE showed similar cleavage of the 20 N-terminal amino acids and membrane association properties similar to wild-type torsinA but, unlike the wild-type, torsinAΔE was not secreted in the S2 culture even after deletion of the membrane-anchoring segment. This indicates that the dystonia-associated mutation produces a structurally distinct, possibly misfolded, form of torsinA, which cannot be properly processed in the secretory pathway of eukaryotic cells.


2016 ◽  
Vol 3 (12) ◽  
pp. 1699-1704 ◽  
Author(s):  
Nicola Zanna ◽  
Andrea Merlettini ◽  
Claudia Tomasini

Nine amino acids with different chemical properties have been chosen to promote the formation of hydrogels based on the bolamphiphilic gelator A: three basic amino acids (arginine, histidine and lysine), one acidic amino acid (aspartic acid), two neutral aliphatic amino acids (alanine and serine) and three neutral aromatic amino acids (phenylalanine, tyrosine and tryptophan).


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223381 ◽  
Author(s):  
Grace R. Murphy ◽  
R. Hugh Dunstan ◽  
Margaret M. Macdonald ◽  
Nattai Borges ◽  
Zoe Radford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document