Developmental regulation of a secreted gelatin-binding protein during myogenesis in vitro

1987 ◽  
Vol 65 (12) ◽  
pp. 1031-1038 ◽  
Author(s):  
Anat Lev ◽  
Paul C. Holland

Collagen has a stimulatory effect on the differentiation of skeletal muscle cells in culture. Putative collagen-binding proteins were isolated from detergent-solubilized cultures of the L6 rat muscle cell line and primary clonal cultures of human skeletal muscle satellite cells, using gelatin–Sepharose affinity chromatography. In addition to fibronectin, which has been reported by others to be synthesized by cultured muscle cells, we found that muscle cultures synthesized gelatin-binding proteins of lower apparent molecular weight. Only one of these proteins was secreted into the growth medium and bound to type I collagen. Binding of this protein to gelatin and collagen–Sepharose was resistant to repeated washing with 1 M NaCl and nonionic detergent. The secreted gelatin-binding protein had an apparent molecular weight of 63 000 – 72 000, depending upon the conditions of electrophoresis. The lack of reactivity of the secreted protein with polyclonal antisera against fibronectin, the lack of effect of protease inhibitors on its appearance in the medium, and the rapid de novo production of the protein during pulse labeling with radioactive methionine indicated that it was not a fibronectin fragment. The rate of synthesis of the secreted gelatin-binding protein increased markedly during the myogenesis of rat and human cultures.

1989 ◽  
Vol 94 (2) ◽  
pp. 361-369
Author(s):  
R.C. Ogle ◽  
A.J. Potts ◽  
M. Yacoe ◽  
C.D. Little

Collagen binding proteins (CBP) are hydrophobic, cell surface polypeptides, isolated by collagen affinity chromatography. Antibodies to CBPs inhibit the attachment of embryonic chicken heart fibroblasts to native type I collagen fibrils in a dose-dependent manner. The CBP antibodies also induce rounding and detachment of cells adherent to a planar substratum. This process of antibody-mediated substratum detachment resulted in a clustering of CBP and cell-associated extracellular matrix at the cell surface, and the rearrangement of filamentous actin. Other functional studies showed that cells grown within a three-dimensional gel of type I collagen cannot be immunostained at the cell surface with CBP antibodies. However, treatment of cultures with purified collagenase, unmasks immunoreactive sites and permits strong cell surface immunolabeling. This result suggests that collagen sterically blocks antibody access to CBP. Finally, we show that antibodies to CBP recognize purified avian integrin beta subunits; and that antibodies to avian integrins recognize a 100,000 Mr CBP. These data demonstrate that chicken embryonic fibroblasts possess surface polypeptides that mediate adhesion to type I collagen, and suggest that two of these proteins are related to the integrin family.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Yi-Ywan M. Chen ◽  
Pei-Hua Tsai ◽  
Zong-Sian Ye ◽  
Yu-Wen Huang ◽  
Hui-Ru Shieh ◽  
...  

ABSTRACT Streptococcus parasanguinis is a dominant isolate of dental plaque and an opportunistic pathogen associated with subacute endocarditis. As the expression of collagen binding proteins (CBPs) could promote the establishment of S. parasanguinis in the host, the functions of three putative CBP-encoding loci, Spaf_0420, Spaf_1570, and Spaf_1573, were analyzed using isogenic mutant strains. It was revealed that S. parasanguinis FW213 bound effectively to fibronectin and type I collagen, but the strain’s affinity for laminin and type IV collagen was quite low. By using various deletion derivatives, it was found that these three loci mediated the binding of S. parasanguinis to multiple extracellular matrix molecules, with type I collagen as the common substrate. Derivative strains with a deletion in any of the three loci expressed reduced binding to trypsin-treated swine heart valves. The deletion of these loci also reduced the viable count of S. parasanguinis bacteria within macrophages, especially the loss of Spaf_0420, but only strains with deletions in Spaf_0420 and Spaf_1570 expressed reduced virulence in the Galleria mellonella larva model. The deletion of Spaf_1570 and Spaf_1573 affected mainly the structure, but not the overall mass, of biofilm cultures in a flow cell system. Thus, CBPs are likely to be more critical for the initial colonization of S. parasanguinis on host tissues during the development of endocarditis. IMPORTANCE Bacteria generally can utilize multiple adhesins to establish themselves in the host. We found that Streptococcus parasanguinis, a dominant oral commensal and an opportunistic pathogen for subacute endocarditis, possesses at least three collagen-binding proteins that enable S. parasanguinis to successfully colonize damaged heart tissues and escape innate immune clearance. The binding specificities of these three proteins for extracellular matrix molecules differ, although all three proteins participate in biofilm formation by S. parasanguinis. The “multiligand for multisubstrate” feature of these adhesins may explain the high adaptability of this microbe to different tissue sites.


1988 ◽  
Vol 106 (1) ◽  
pp. 205-211 ◽  
Author(s):  
C Mauch ◽  
K van der Mark ◽  
O Helle ◽  
J Mollenhauer ◽  
M Pfäffle ◽  
...  

Fibroblasts from dermatosparactic sheep fail to contract collagen gels and show a reduced attachment to collagenous substrates. By comparing collagen-binding membrane proteins of normal (+/+), homozygote (-/-), and heterozygote (+/-) fibroblasts, we present evidence that the interaction of normal fibroblasts with native type I collagen involves a protein of apparent Mr = 34,000 which is absent from dermatosparactic fibroblasts and seems to be related to anchorin CII. This conclusion was reached from the following experiments: (a) On a blot of membrane proteins from normal fibroblasts radioactively labeled type I collagen bound predominantly to a protein band of 34 kD; dermatosparactic membranes revealed only a small amount of binding to a component with a molecular mass of 47 kD. (b) After separation of normal fibroblast membrane proteins on type I collagen-Sepharose, a collagen-binding component of 34 kD was found which was absent from the corresponding fraction of dermatosparactic membranes. (c) Antibodies to anchorin CII stained the surface of normal (+/+), but not of dermatosparactic (-/-) fibroblasts and labeled a 34-kD component after immunoblotting of normal fibroblast membrane proteins. (d) After metabolic labeling of fibroblasts with [35S]methionine and immunoprecipitation with anti-anchorin CII, 40- and 34-kD components were precipitated from extracts of normal fibroblasts, while the latter component was absent from affected cells. Similar differences were found after immunoblotting of membranes from whole normal or affected skin. These data indicate that dermatosparaxis of sheep involves a molecular defect of a collagen-binding protein. Therefore this disease represents a model to study the complex interaction of cells with the extracellular matrix on a molecular level.


1985 ◽  
Vol 73 (1) ◽  
pp. 279-297
Author(s):  
E.J. Mitchell ◽  
A.M. Zimmerman

A protein from an ATP extract prepared from an acetone powder of Tetrahymena pyriformis GL was identified as actin. The protein migrated slightly behind muscle actin on sodium dodecyl sulphate (SDS)/10% polyacrylamide gels (SDS/PAGE) with an apparent molecular weight of 47 500 (47.5 X 10(3) Mr). Partial proteolysis of this band with Staphylococcus aureus V-8 protease followed by electrophoresis revealed a pattern of peptides in which at least four peptides were similar to those observed after digestion of rabbit skeletal muscle actin. The 47.5 X 10(3) Mr protein appeared particularly susceptible to endogenous proteolytic cleavage, which was inhibited by leupeptin. An ATP extract prepared with leupeptin was applied to a DNase I-affinity column and a distinct peak was eluted with 3 M-guanidine. HCl; the DNase I-binding protein appeared as a distinct band on SDS/PAGE with an apparent molecular weight of 47.5 X 10(3) Mr. In the absence of leupeptin, the DNase I-binding protein appeared as a broad 34 X 10(3) Mr band on gels. Both the ATP extract and the DNase I-binding protein showed reactivity with commercially available antiserum raised against native chicken skeletal muscle actin as determined by an enzyme-linked immunosorbance assay (ELISA). Immuno-blotting studies and affinity purification of this antiserum showed that the recognition was not specific to the 47.5 X 10(3) Mr protein. However, using affinity-purified anti-actin antibodies raised against denatured actin from chick smooth muscle, recognition of the 47.5 X 10(3) Mr protein and a 34 X 10(3) Mr protein was shown. In negatively stained preparations from an ATP extract after two cycles of polymerization and depolymerization there were filaments, 8–12 nm diameter, which did not decorate with subfragment S-1 of myosin, but which resembled intermediate filaments. Analysis of these filaments on SDS/PAGE indicated an intensely stained 54 X 10(3) Mr band. It is suggested that, in vitro, Tetrahymena intermediate filaments assemble under conditions expected to assemble actin filaments. Thus, in Tetrahymena there is a protein that resembles actin in its extractability, molecular weight, peptide pattern after partial proteolysis, DNase I-binding capacity and reactivity with anti-actin antibodies. However, this protein did not assemble into actin filaments in crude extracts.


1999 ◽  
Vol 181 (7) ◽  
pp. 2192-2198 ◽  
Author(s):  
Mark S. Turner ◽  
Tonia Woodberry ◽  
Louise M. Hafner ◽  
Philip M. Giffard

ABSTRACT BspA is a basic surface-exposed protein from Lactobacillus fermentum BR11. Sequence comparisons have shown that it is a member of family III of the solute binding proteins. It is 89% identical to the collagen binding protein, Cnb, fromLactobacillus reuteri. Compared with the database ofEscherichia coli proteins, BspA is most similar to thel-cystine binding protein FliY. To investigate the function of BspA, mutants depleted for BspA were generated by homologous recombination with a temperature-sensitive plasmid. These mutants were significantly impaired in their abilities to take upl-cystine. Uptake rates of l-glutamine,l-histidine, and l-lysine, which are substrates for other binding proteins with similarity to BspA, were unaffected. Evidence was obtained that BspA is necessary for maximal resistance to oxidative stress. Specifically, inactivation of BspA causes defective growth in the presence of oxygen and sensitivity to paraquat. Measurements of sulfhydryl levels showed that incubation of L. fermentum BR11 with l-cystine resulted in increased levels of sulfhydryl groups both inside and outside the cell; however, this was not the case with a BspA mutant. The role of BspA as an extracellular matrix protein adhesin was also addressed. L. fermentum BR11 does not bind to immobilized type I collagen or laminin above background levels but does bind immobilized fibronectin. Inactivation of BspA did not significantly affect fibronectin binding; therefore, we have not found evidence to support the notion that BspA is an extracellular matrix protein binding adhesin. As BspA is most probably not a lipoprotein, this report provides evidence that gram-positive bacterial solute binding proteins do not necessarily have to be anchored to the cytoplasmic membrane to function in solute uptake.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


1980 ◽  
Vol 58 (4) ◽  
pp. 609-613 ◽  
Author(s):  
P. E. Fletcher ◽  
G. L. Fletcher

Zinc- and copper-binding proteins were isolated from the plasma of winter flounder using gel filtration chromatography. A single copper-binding protein fraction of molecular weight 170 000 was isolated from the plasma of both sexes.In male and female flounder over 95% of the plasma zinc was associated with a zinc-binding protein(s) with a molecular weight of 76 000. In male flounder the remaining zinc appeared to be bound to a protein(s) of molecular weight 186 000. In female flounder the remaining 5% of the zinc was associated with two zinc-binding fractions with apparent molecular weights of 186 000 and 340 000 – 370 000.Extracts of plasma vitellogenin and egg yolk proteins revealed significant quantities of zinc and copper. It is hypothesized that the female specific zinc-binding protein (340 000 – 370 000) was vitellogenin.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247377
Author(s):  
Vid Jan ◽  
Katarina Miš ◽  
Natasa Nikolic ◽  
Klemen Dolinar ◽  
Metka Petrič ◽  
...  

Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and β) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7–10 days. A short-term co-culture (10–11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAβ2, NKAβ3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.


Sign in / Sign up

Export Citation Format

Share Document